Tính tổng : P = 1 + 2 + 3 + 4 + ... + ( n - 1 ) + n
Tính tổng :
C= 1/1*2*3*4 + 1/2*3*4*5 + ...+ 1/ n*(n+1)*(n+2)*(n+3)
A=(1/1.2.3-1/2.3.4)+(1/2.3.4-1/3.4.5)+..............+(1/n(n+1)(n+2)-1/(n+1)(n+2)(n+3))
A=1/1.2.3-1/(n+1)(n+2)(n+3)
A=1/18-1/(n+1)(n+2)(n+3)
đúng nhé
Biết : n! = 1 . 2 . 3 ... n . Tính tổng : 1 . 1 ! 2 . 2 ! 3 . 3 ! 4 . 4 !
Bạn hãy tôn trọng người khác bằng cách chọn đúng tên lớp
tính tổng dãy số:
a, A= 1 . 2 + 2 .3 + 3 . 4 + ... + n . (n+1)
b, B= 1 . 2 . 3 + 2 . 3 . 4 + 3 . 4 . 5 + ... + n . (n+1) . (n+2)
a) 3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3
=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)]
=n.(n+1).(n+2)
=>S=[n.(n+1).(n+2)] : 3
giúp mình nha,thanks
tính tổng 1*2+2-3+3*4+....+n*n+1
Đặt C= 1.2+2.3+3.4+...+n.(n+1)
3C=1.2.3+2.3.3+3.4.3+...+n.(n+1).3
3C=1.2.3+2.3.(4-1)+3.4.(5-2)+....+n.(n+1)+[(n+2)-(n-1)]
3C=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+n.(n+1).(n+2)-(n-1).n.(n+1)
3C=n.(n+1).(n+2)
C=\(\frac{n.\left(n+1\right).\left(n+2\right)}{3}\)
1. Viết chương trình tính tích N=1*2*3*...*n (với n được nhập từ bàn phím)
2. Viết chương trình tính tổng A=1/1*3+1/2*4+1/3*5+...+1/n*(n+2)
3. Viết chương trình tính tổng số lẻ có trong dãy từ 0->n (n được nhập từ bàn phím)
4. Viết chương trình in ra màn hình các số chẵn có trong dãy từ 0->n (n được nhập từ bàn phím) và đếm có bao nhiêu số.
5. Viết chương trình in ra màn hình các số lẻ có trong dãy số từ 0->n (n được nhập từ bàn phím) và đếm có bao nhiêu số.
6. Viết chương trình nhập số nguyên n. Tìm và đưa ra màn hình các ước của n.
7. Viết chương trình in ra màn hình các bội của n ( n được nhập từ bàn phím)
8. Viết chương trình tính tổng S=1/1+1/2+1/3+...+1/n (n được nhập từ bàn phím)
Câu 6:
uses crt;
var n,i:integer;
begin
clrscr;
readln(n);
for i:=1 to n do
if n mod i=0 then write(i:4);
readln;
end.
5:
uses crt;
var n,i,dem:integer;
begin
clrscr;
readln(n);
dem:=0;
for i:=0 to n do
if i mod 2=1 then
begin
write(i:4);
dem:=dem+1;
end;
writeln;
writeln(dem);
readln;
end.
1/1*2 +1/2*3 +1/3*4 + 1/4*5 +...+1/n*(n+1) 3/1*2+3/2*3+3/3*4+3/4*5+...+3/n*(n+1) tính tổng nha các bạn
\(S=\dfrac{1}{1x2}+\dfrac{1}{2x3}+\dfrac{1}{3x4}+\dfrac{1}{4x5}+...\dfrac{1}{nx\left(n+1\right)}\)
\(S=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...\dfrac{1}{n}-\dfrac{1}{n+1}\)
\(S=1-\dfrac{1}{n+1}=\dfrac{n}{n+1}\)
\(T=\dfrac{3}{1x2}+\dfrac{3}{2x3}+\dfrac{3}{3x4}+\dfrac{3}{4x5}+...\dfrac{3}{nx\left(n+1\right)}\)
\(T=3x\left[\dfrac{1}{1x2}+\dfrac{1}{2x3}+\dfrac{1}{3x4}+\dfrac{1}{4x5}+...\dfrac{1}{nx\left(n+1\right)}\right]\)
\(T=3x\left[1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...\dfrac{1}{n}-\dfrac{1}{n+1}\right]\)
\(T=3x\left(1-\dfrac{1}{n+1}\right)=\dfrac{3xn}{n+1}\)
Bài 1 : Tính tổng
1+2+3+4+....+n
Bài 2 : Tính A = 1.2+2.3+3.4+....+(n-1).n
Bài 3 Tính A = 1.3+2.4+3.5+.....+(n-1).(n+1)
câu 1
Câu hỏi của Ngọc Hà - Toán lớp 6 - Học toán với OnlineMath
viết chương trình tính tổng
s= 1*2/3*4+2*3/4*5+3*4/5*6+...+n*(n+1)/(n+2)*(n+3)
uses crt;
var s:real;
i,n:integer;
begin
clrscr;
readln(n);
s:=0;
for i:=1 to n do
s:=s+(n*(n+1))/((n+2)*(n+3));
writeln(s:4:2);
readln;
end.
Tính các tổng:
a) A=1/(1*2)+1/(2*3)+...+1/[n*(n+1)]
b) B=1/(1*2*3)+1/(2*3*4)+...+1/[n(n+1)(n+2)]
a) \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}=1-\frac{1}{n+1}\)
b) \(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(=\frac{1}{4}-\frac{1}{2\left(n+1\right)\left(n+2\right)}\)