Cho (O,R) đk AB. M thuộc AB. Qua M kể dây CD v.g AB. T đối xứng voi C qua A. CMR: T nằm trên 1 đường thẳng cố định khi M đi chuyen trên AB.
Cho đường tròn (O;R) đường kính AB. Gọi M là 1 điểm thuộc AB. Vẽ dây CD qua M và vuông góc với AB. Gọi I là điểm đối xứng với C qua A. CMR: I luôn nằm trên 1 đường thẳng cố định khi M di chuyển trên đoạn AB.
a) Ta có: góc AME = 90 độ (góc nt chắn nửa đt)
=> AN vuông góc EM tại M
Mặt khác: ACN = 90 độ (góc nt chắn nửa đt)
=> AE vuông góc CN tại C
Xét tam giác ANE có : NC và EM là các đường cao
=> B là trực tâm tam giác ANE
=> AB vuông góc NE (t/c trực tâm tam giác)
b) Ta có M là trung điểm AN (t/c đối xứng)
và M cũng là trung điểm EF (t/c đói xứng)
Do đó tứ giác AENF là hính bình hành
=> FA song song NE
Mà NE vuông góc AB (cmt)
=> FA vuông góc AB tại A thuộc (O)
Vậy FA là tiếp tuyến của đt (O)
c)Ta có M là trung điểm AN (t/c đối xứng)
AN vuông góc BF tại M (góc AMB =90 độ)
=> BF là đường trung trực của AN
Xét tam giác AFB và tam giác NFB có
1/ BF cạnh chung
2/ FA = FN (t/c đ trung trực)
3/ BA = BN (t/c đ trung trực)
=> tam giác AFB = tam giác NFB
=> góc FAB = góc FNB
Mà FAB = 90 độ (cmt)
=> góc FNB bằng 90 độ
=> FN vuông góc với BN tại N thuộc (B;BN)
Mà BN = AB
=> FN là tiếp tuyến cửa đt (B;AB)
Cho ( O; R) đường kính AB , M nằm giữa A và B . Qua M vẽ dây CD vuông góc với AB , lấy E đối xứng với A qua M
a, Tứ giác ACED là hìn j ( Mình làm đk rùi)
b, Gọi H ,K lần lượt là hình chiếu của M trên AB và AC . CMR \(\frac{HM}{HK}.\frac{MK}{MC}=\frac{CD}{4R}\)( mình ko vẽ đk câu này mình xem lại đề đúng ai có sửa đề thì phải CM hộ)
c, Gọi D là hình điiểm đối xứng với C qua A. CMR D nằm trên 1 đuogừ tròn cố định khi M di chuyển trên đường kính AB ( M khác A<B)
Giúp mình nha
1. Cho (O,R) dây AB cố định. Từ C di động trên (O) dựng hình bình hành CABD. CMR giao điểm hai đường chéo nằm trên 1 đường trong cố định
2. Cho BC cố định, I là trung điểm BC, A di động trên mặt phẳng sao cho BA=BC, H là trung điểm của AC, AI cắt BH tại M. Hỏi M di động trên di động trên đường nào thì A di động
3. Cho (O,R) BC là dây cố định. A là 1 điểm di động trên (O,R). Lấy M đối xứng với C qua trung điểm I của AB. Hỏi M di động trên đường nào khi A di động
4. Cho A di chuyển trên (O,R) đường kính BC gọi M đối xứng với A qua B, H là hình chiếu của A trên BC, I là trung điểm HC
a. CMR M chuyển động trên (O,R) 1 đường thẳng tròn cố định
b. CMR tam giác AHM đồng dạng tam giác CIA
c. CMR MH vuông góc AI
d MH cắt (O) tại E và F đường thẳng AI cắt (O) tại G. CMR Tổng bình phương các cạnh của tứ giác AEGF ko đổi
Cho (O;R), đường thẳng d cắt đường tròn (O) tại C và D, lấy M trên đường thẳng d sao cho D nằm giữa C và M. Qua M vẽ tiếp tuyến MA, MB với đường tròn. Gọi H là trung điểm của CD, OM cắt AB tại E. CMR :
a) AB vuông góc OM
b) Tích OF.OM không đổi.
c) Khi M di chuyển trên đường thẳng d thì đường thẳng AB đi qua một điểm cố định.
Cho (O;R) và dây cung AB cố định không đi qua tâm O; 2 điểm C, D di động trên cung lớn AB sao cho AD//BC. Gọi M là giao điểm của AC và BD.
a) Chứng minh \(MO⊥AD\)
b) Chứng minh điểm M luôn nằm trên đường tròn cố định
c) Chứng minh đường thẳng đi qua M và // với AD luôn đi qua một điểm cố định I. Tính IO theo R và AB=R
Cho đường tròn(O;R) đường kính AB và C là điểm nằm trên đường tròn. Gọi M là điểm đối xứng với A qua C
a)Hãy xác định vị trí điểm C trên (O;R) sao cho AM lớn nhất
b)Cho biết AM= 2R\(\sqrt{3}\). Hãy tìm số đo góc A
c)CMR M thuộc 1 đươngf tròn cố định khi C chạy trên (O;R)
Cho đường tròn (O;R) dây BC cố định. Điểm A di động trên cung lớn AB (A khác B khác C). Tia phân giác của góc ACB cắt (o) tại D khác C. Lấy I thuộc đoạn CD sao cho ĐI=ĐB. BỊ cắt (o) tại K khác B
a) CMR: Tam giác KAC cân
b) CMR: AI luôn đi qua điểm cố định. Từ đó xác định vị trí điểm A sao cho AI lớn nhất
c) Trên tia đối của tia AB lấy điểm M sao cho AM=AC. Tính quỷ tích M khi A di động trên cung AB của (o)
Cô hướng dẫn nhé. Bài này ta sử dụng tính chất góc có đỉnh nằm trong, trên và ngoài đường tròn.
a. Do \(\widehat{DBC}=\widehat{DIB}\Rightarrow\) cung DB = cung DB + cung KC.
Lại có do CD là phân giác nên \(\widehat{BCD}=\widehat{ACD}\) hay cung BD = cung DA. Vậy thì cung AK = cung KC hay AK = KC.
Vậy tam giác AKC cân tại K.
b. Xét tam giác ABC có CI và BI đều là các đường phân giác nên AI cũng là phân giác. Vậy AI luôn đi qua điểm chính giữa cung BC. Ta gọi là H.
AI lớn nhất khi \(AI\perp BC.\)
c. Gọi J là giao ddierm của HO với (O). Khi đó J cố định.
Ta thấy ngay \(\widehat{IAH}=90^o\)
Lại có AI là phân giác góc BAC nên Ạ là phân giác góc MAC. Lại do MAC cân tại A nên MJ = JC.
Vậy M luôn thuộc đường tròn tâm J, bán kinh JC (cố định).
Bài IV (3,5 điểm):
Cho đường tròn (O; R), dây CD có trung điểm E. Trên tia đối của CD lấy điểm M. Kẻ tiếp tuyến MA, MB với đường tròn (A, B là các tiếp điểm). Đường thẳng MO cắt AB tại H, cắt đường tròn tại I (I nằm giữa M và O).
a) Chứng minh: năm điểm M, A, O, E, B cùng thuộc một đường tròn.
b) Chứng minh: từ đó suy ra
c) Chứng minh: CI là phân giác của
d) Đường thẳng AB cắt OE tại K. Khi M di chuyển trên tia đối của tia CD thì AB luôn đi qua một điểm cố định.
Cho (O;R) và một đường thẳng d cố định cắt đường tròn (O) tại C va D, trên đường thẳng lấy điểm M sao cho D nằm giữa M và C. Qua điểm M vẽ các tiếp tuyến MA, MB với đường tròn (A,B là các tiếp điểm). Gọi H là trung điểm của CD, OM cắt AB tại E. Chứng minh rằng :
a. Bốn điểm O,B,M,H cùng nằm trên một đường tròn
b. ME ⊥ AB
c. Tích OE.Om không đổi và đường thẳng AB luôn đi qua điểm cố định khi điểm M di động trên đường thẳng d
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa