Cho tam giác ABC vuông tại A.Tia phân giác của góc ABC cắt AC tại D
a)So sánh AB và BD.
b)Trên cạnh BC lấy điểm E sao cho BE=BA. Chứng minh:
c)Chứng minh: DE vuông tại BC
d)Chứng minh: AD<DC.
Cho tam giác ABC vuông tại A tia phân giác của góc B cắt AC tại D. Trên cạnh BC lấy điểm E sao cho AB = BE. a/ Chứng minh AD = DE và DE vuông góc BC b/ So sánh AB và EC
a/ Xét tg ABD và tg EBD có:
BD chung
AB = BE (gt)
góc ABD = góc EBD ( BD là pg góc B)
=> tg ABD = tg EBD (c-g-c)
=> \(\left\{{}\begin{matrix}\text{AD = DE (2 cặp cạnh tương ứng)}\\\text{góc BAD = góc BED (2 cặp góc tương ứng)}\end{matrix}\right.\)
mà góc BAD = 90 ( tg ABC vuông tại A)
=> góc BED = 90
=> DE vuông góc BC
cho tam giác ABC vuông tại A (AB<AC) tia phân giác của góc B cắt AC tại D trên cạnh BC lấy điểm E sao cho BE =BA vẽ AH vuông góc với BC tại H
a chứng minh tam giác ABD = tam giác EBD và AD = ED
b chứng minh AH song song với DE
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>DA=DE và góc BED=góc BAD=90 độ
b; AH vuông góc BC
DE vuông góc BC
=>AH//DE
cho tam giác ABC vuông tại A.AB nhỏ hơn AC tia phân giác của góc ABC cắt AC tại D trên cạnh BC lấy điểm E sao cho BE=BA vẽ AH vuông góc với BC tại H
a)Chứng minh AD=ED
b)Chứng minh AH song song với DE
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
Do đó; ΔBAD=ΔBED
=>DA=DE và góc BED=90 độ
=>DE vuông góc với BC
b: AH vuông góc với BC
DE vuông góc với BC
Do đó: AH//DE
CHo tam giác ABC có AB=9cm, AC= 12 cm và BC = 15 cm. Vẽ tia phân giác của góc B cắt cạnh AC tại D. Trên cạnh BC lấy điểm E sao cho BE=BA. Đường thẳng DE cắt đường thẳng AB tại F. a, Chứng minh tam giác ABC vuông. b, Chứng minh DE vuông góc với BC rồi so sánh AD và DC. c, Gọi M, N lần lượt là trung điểm của AE và CF. CHứng minh ba điểm M,D,N thẳng hàng
mn giúp mik vs mik cần gấp.
Cho tam giác ABC vuông tại A. AB nhỏ hơn AC. Tia phân giác của góc ABC cắt AC tại ED, trên cạnh BC lấy điểm E sao cho BE bằng BA. Vẽ AH vuông với BC tại H
a, chứng minh AD bằng ED
b, chứng minh AH song song với DE
Cho tam giác ABC vuông tại A AB bé hơn AC tia phân giác của góc ABC cắt AC tại D. lấy điểm E trên cạnh BC sao cho be = AB. a) chứng minh tam giác ABD bằng tam giác ABD. b) Chứng minh DE vuông góc với AC. c) tia ED cắt BA tại M chứng minh EC = AM
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
a: Xét ΔABD và ΔEBD có
BA=BE
ˆABD=ˆEBDABD^=EBD^
BD chung
Do đó: ΔABD=ΔEBD
Cho tam giác ABC vuông tại A . Trên cạnh BC lấy điêm E sao cho BE=BA . Tia phân giác của góc B cắt AC ở D
a) Chứng minh tám giác ABD=tam giác EBD
b) Chứng minh DE vuông góc với BC
c) Trên tia đối của tia AB lấy điểm F sao cho AF =EC . Chứng minh DC=DF và ba điểm E,D,F thẳng hàng
Cho tam giác ABC vuông tại A, có góc ABC = 60*. Trên tia BC lấy điểm D sao cho BD = BA. Đường thẳng vuông góc với BC tại D cắt cạnh AC tại E, cắt tia BA tại F.
a) Tính số đo góc ACB và so sánh độ dài các cạnh của tam giác ABC.
b) Chứng minh: BE là đường trung trực của đoạn thẳng AD và BE là tia phân giác của góc ABC.
c) Chúng minh: AD // FC.
d) Chứng minh: AC = 3DE.
Bài làm
a) Xét tam ABC vuông tại A có:
\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )
hay \(\widehat{ACB}+60^0=90^0\)
=> \(\widehat{ACB}=90^0-60^0=30^0\)
b) Xét tam giác ABE và tam giác DBE có:
\(\widehat{BAE}=\widehat{BDE}=90^0\)
Cạnh huyền: BE chung
Cạnh góc vuông: AB = BD ( gt )
=> Tam giác ABE = tam giác DBE ( cạnh huyền - cạnh góc vuông )
=> \(\widehat{ABE}=\widehat{DBE}\)( hai góc tương ứng )
=> BI là tia phân giác của góc BAC
Mà I thược BE
=> BE là tia phân giác của góc BAC
Gọi I là giao điểm BE và AD
Xét tam giác AIB và tam giác DIB có:
AB = BD ( gt )
\(\widehat{ABE}=\widehat{DBE}\)( cmt )
BI chung
=> Tam giác AIB = tam giác DIB ( c.g.c )
=> AI = ID (1)
=> \(\widehat{BIA}=\widehat{BID}\)
Ta có: \(\widehat{BIA}+\widehat{BID}=180^0\)( hai góc kề bù )
Hay \(\widehat{BIA}=\widehat{BID}=\frac{180^0}{2}=90^0\)
=> BI vuông góc với AD tại I (2)
Từ (1) và (2) => BI là đường trung trực của đoạn AD
Mà I thược BE
=> BE là đường trung trực của đoạn AD ( đpcm )
c) Vì tam giác ABE = tam giác DBE ( cmt )
=> AE = ED ( hai cạnh tương ứng )
Xét tam giác AEF và tam giác DEC có:
\(\widehat{EAF}=\widehat{EDC}=90^0\)
AE = ED ( cmt )
\(\widehat{AEF}=\widehat{DEF}\)( hai góc đối )
=> Tam giác AEF = tam giác DEC ( g.c.g )
=> AF = DC
Ta có: AF + AB = BF
DC + BD = BC
Mà AF = DC ( cmt )
AB = BD ( gt )
=> BF = BC
=> Tam giác BFC cân tại B
=> \(\widehat{BFC}=\widehat{BCF}=\frac{180^0-\widehat{FBC}}{2}\) (3)
Vì tam giác BAD cân tại B ( cmt )
=> \(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{FBC}}{2}\) (4)
Từ (3) và (4) => \(\widehat{BAD}=\widehat{BFC}\)
Mà Hai góc này ở vị trí đồng vị
=> AD // FC
d) Xét tam giác ABC vuông tại A có:
\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau ) (5)
Xét tam giác DEC vuông tại D có:
\(\widehat{DEC}+\widehat{ACB}=90^0\)( hai góc phụ nhau ) (6)
Từ (5) và (6) => \(\widehat{ABC}=\widehat{DEC}\)
Ta lại có:
\(\widehat{ABC}>\widehat{EBC}\)
=> AC > EC
Mà \(\widehat{EBC}=\frac{1}{2}\widehat{ABC}\)
=> EC = 1/2 AC.
=> E là trung điểm AC
Mà EC = EF ( do tam giác AEF = tam giác EDC )
=> EF = 1/2AC
=> AE = EC = EF
Và AE = ED ( cmt )
=> ED = EC
Mà EC = 1/2AC ( cmt )
=> ED = 1/2AC
=> 2ED = AC ( đpcm )
Mình chứng minh ra kiểu này cơ. không biết đề đúng hay sai!??
cho tam giác ABC vuông tại A.Trên cạnh BC lấy điểm E sao cho BA=BE.Tia phân giác của góc B cắt cạnh AC tại D.
a) Chứng minh DA=DE.
b)Chứng minh DE vuông góc BC.
c)Tia eD cắt cạnh AB tại M,chứng minh DM=DC
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
=>DA=DE
b: Ta có: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BED}=90^0\)
=>DE\(\perp\)BC
c: Xét ΔDAM vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADM}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDAM=ΔDEC
=>DM=DC
Cho tam giác ABC có AB= 9cm, AC=12cm, BC=15cm. Vẽ tia phân giác của góc B cắt cạnh AC tại D. Trên cạnh BC lấy điểm E sao cho BE=BA. Đường thẳng DE cắt đường thẳng AD tại F.
a. Chứng minh tam giác ABC là tam giác vuông
b. Chứng minh DE vuông góc với BC rồi so sánh AD và DC
c. Gọi M, N lần lượt là trung điểm của AE và CF. Chứng minh ba điểm M,D,N thẳng hàng
giúp mk câu c zới