Phân tích đa thức thành nhân tử
a) 4x^2 +4x-3x
b) x^2+7x+10
c) x^2-x-12
d) x^2+3x-18
Phân tích đa thức thành nhân tử(tách hạng tử)
1)x^2+2x-3
2)x^2-5x+6
3)x^2+7x^2+12x
4)x^2-x-12
5)3x^2+3x-36
6)5x^2-5x-10
7)3x^2-7x-6
8)4x^2+4x-3
9)8x^2-2x-3
Phân tích đa thức thành nhân tử(tách hạng tử)
1)x^2+2x-3=x^2-x+3x-3=x(x-1)+3(x-1)=(x-1)(x+3)
2)x^2-5x+6=x^2-2x-3x+6=x(x-2)-3(x-2)=(x-2)(x-3)
3)x^2+7x+12=(x+3)(x+4)
4)x^2-x-12=(x-4)(x+3)
5)3x^2+3x-36=3[(x-3)(x+4)]
6)5x^2-5x-10=5[(x-2)(x+1) ]
7)3x^2-7x-6=(x-3)(3x+2)
8)4x^2+4x-3=4x^2+6x-2x-3=(2x-1)(2x+3)
9)8x^2-2x-3=8x^2+4x-6x-3=(4x-3)(2x+1)
1: \(x^2+2x-3=\left(x+3\right)\left(x-1\right)\)
2: \(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)
3: \(x^2+7x^2+12x=4x\left(2x+3\right)\)
4: \(x^2-x-12=\left(x-4\right)\left(x+3\right)\)
5: \(3x^2+3x-36=3\left(x^2+x-12\right)=3\left(x+4\right)\left(x-3\right)\)
6: \(5x^2-5x-10=5\left(x^2-x-2\right)=5\left(x-2\right)\left(x+1\right)\)
phân tích các đa thức sau thành nhân tử:
2y ( x+2) -3x - 6
3 (x+4) -x^2 - 4x
2 (x+5) -x^2 -4x
x^2 + 6x -3x -18
a: \(2y\left(x+2\right)-3x-6\)
\(=2y\left(x+2\right)-3\left(x+2\right)\)
\(=\left(x+2\right)\left(2y-3\right)\)
b: \(3\left(x+4\right)-x^2-4x\)
\(=3\left(x+4\right)-\left(x^2+4x\right)\)
\(=3\left(x+4\right)-x\left(x+4\right)\)
\(=\left(x+4\right)\left(3-x\right)\)
c: \(2\left(x+5\right)-x^2-4x\)
\(=2x+10-x^2-4x\)
\(=-x^2-2x+10\)
\(=-x^2-2x-1+11\)
\(=11-\left(x^2+2x+1\right)\)
\(=11-\left(x+1\right)^2\)
\(=\left(\sqrt{11}-x-1\right)\left(\sqrt{11}+x+1\right)\)
d: \(x^2+6x-3x-18\)
\(=\left(x^2+6x\right)-\left(3x+18\right)\)
\(=x\left(x+6\right)-3\left(x+6\right)\)
\(=\left(x+6\right)\left(x-3\right)\)
Phân tích đa thức thành nhân tử a)x^2+3x-5 b)5x^2+6xy+y^2 c)x^2-7x+10 d)4x^2+12x+9-y^2
b: \(5x^2+6xy+y^2\)
\(=5x^2+5xy+xy+y^2\)
\(=5x\left(x+y\right)+y\left(x+y\right)\)
\(=\left(x+y\right)\left(5x+y\right)\)
c: \(x^2-7x+10=\left(x-2\right)\left(x-5\right)\)
d: \(4x^2+12x+9-y^2\)
\(=\left(2x+3\right)^2-y^2\)
\(=\left(2x-y+3\right)\left(2x+y+3\right)\)
phân tích thành đa thức nhân tử
4x^3 - 7x^2 + 3x
( x - 1)( x -2 )( x -3)( x - 4) -15
\(4x^3-7x^2+3x\)
\(=4x^3-4x^2-3x^2+3x\)
\(=4x^2\left(x-1\right)-3x\left(x-1\right)\)
\(=\left(x-1\right)\left(4x^2-3x\right)=x\left(x-1\right)\left(4x-3\right)\)
\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)-15\)
\(=\left(x-1\right)\left(x-4\right)\left(x-2\right)\left(x-3\right)-15\)
\(=\left(x^2-5x+4\right)\left(x^2-5x+4+2\right)-15\)
\(=\left(x^2-5x+4\right)^2+2\left(x^2-5x+4\right)+1-16\)
\(=\left(x^2-5x+4+1\right)^2-4^2\)
\(=\left(x^2-4x+4+1-4\right)\left(x^2-4x+4+1+4\right)\)
\(=\left(x^2-4x+1\right)\left(x^2-4x+9\right)\)
Phân tích đa thức thành nhân tử
a) x^3 - 7x - 6
b) x^3 + 3x^2 - 4x -6
c) 2x^2 + 7x + 6
a) x3 - 7x - 6 = x3 + x2 - x2 - x - 6x - 6
= x2(x + 1) - x(x + 1) - 6(x + 1)
= (x + 1)(x2 - x - 6)
= (x + 1)(x2 + 2x - 3x - 6)
= (x + 1)[x(x + 2) - 3(x + 2)]
= (x + 1)(x + 2)(x - 3)
Đa thức x^3 - 2x^2 + x - xy^2 được phân tích thành nhân tử
Đa thức x^3 + 3x^2y +3xy^2 + y^3 được phân tích thành nhân tử là
Đa thức 4x(2y-z)+7y(2y-z) được phân tích thành nhân tử là:
Đa thức x^2+4x+4 được phân tích thành nhân tử là
Tìm x biết x(x-2)-x+2
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Phân tích đa thức thành nhân tử
a) (4x^2 - 3x - 18)^2 - (4x^2 + 3x)^2
b) 9(x + y - 1)^2 - 4(2x + 3y +1)^2
c) -4x^2 + 12xy - 9y^2 + 25
d) x^2 - 2xy + y^2 - 4m^2 + 4mn - n^2
a) Ta có: \(\left(4x^2-3x-18\right)^2-\left(4x^2+3x\right)^2\)
\(=\left(4x^2-3x-18-4x^2-3x\right)\left(4x^2-3x-18+4x^2+3x\right)\)
\(=\left(-6x-18\right)\left(8x^2-18\right)\)
\(=-6\left(x+3\right)\cdot2\left(4x^2-9\right)\)
\(=-12\left(x+3\right)\left(2x-3\right)\left(2x+3\right)\)
b) Ta có: \(9\left(x+y-1\right)^2-4\left(2x+3y+1\right)^2\)
\(=\left(3x+3y-3\right)^2-\left(4x+6y+2\right)^2\)
\(=\left(3x+3y-3-4x-6y-2\right)\left(3x+3y-3+4x+6y+2\right)\)
\(=-\left(x+3y+5\right)\left(7x+9y-1\right)\)
c) Ta có: \(-4x^2+12xy-9y^2+25\)
\(=-\left(4x^2-12xy+9y^2-25\right)\)
\(=-\left[\left(2x-3y\right)^2-25\right]\)
\(=-\left(2x-3y-5\right)\left(2x-3y+5\right)\)
d) Ta có: \(x^2-2xy+y^2-4m^2+4mn-n^2\)
\(=\left(x^2-2xy+y^2\right)-\left(4m^2-4mn+n^2\right)\)
\(=\left(x-y\right)^2-\left(2m-n\right)^2\)
\(=\left(x-y-2m+n\right)\left(x-y+2m-n\right)\)
a) (4x2-3x-18)2-(4x2+3x)2
=(4x2-3x-18-4x2-3x)(4x2-3x-18+4x2+3x)
=(-6x-18)(8x2-18)
=-48x3+108x-144x2+324
Phân tích các đa thức sau thành nhân tử:
a, 2x^2+3x-27
b, x^2-7x-6
c, x^2+7x+12
d,x^2-10x+16
e,x^2-8x+15
g,x^2+6x+8
a) \(2x^2+3x-27\)
\(=2x^2+9x-6x-27\)
\(=x\left(2x+9\right)-3\left(2x+9\right)\)
\(=\left(2x+9\right)\left(x-3\right)\)
b) sửa đề thành \(x^2+7x+6\)
\(x^2+7x+6\)
\(=x^2+x+6x+6\)
\(=x\left(x+1\right)+6\left(x+1\right)\)
\(=\left(x+1\right)\left(x+6\right)\)
Phân tích các đa thức sau thành nhân tử:
a, 2x^2+3x-27
b, x^2-7x-6
c, x^2+7x+12
d, x^2-10x+16
e, x^2-8x+15
g, x^2+6x+8
\(a,=2x^2-6x+9x-27=\left(x-3\right)\left(2x+9\right)\\ b,=x^2-7x+\dfrac{49}{4}-\dfrac{73}{4}\\ =\left(x-\dfrac{7}{2}\right)^2-\dfrac{73}{4}=\left(x-\dfrac{7}{2}-\dfrac{\sqrt{73}}{2}\right)\left(x-\dfrac{7}{2}+\dfrac{\sqrt{73}}{2}\right)\\ c,=x^2+3x+4x+12=\left(x+3\right)\left(x+4\right)\\ d,=x^2-2x-8x+16=\left(x-2\right)\left(x-8\right)\\ e,=x^2-3x-5x+15=\left(x-3\right)\left(x-5\right)\\ g,=x^2+2x+4x+8=\left(x+2\right)\left(x+4\right)\)