Chứng Minh Rằng :
x^2 + xy^2 + 2×(x + y) + 3 > 0 ( với mọi x )
Chứng Minh Rằng :
a) x^2 + 2x + 2 > 0 (với mọi x)
b) x^2 + xy^2 + 2×(x + y) + 3 > 0 ( với mọi x )
c) 4x^2 + y^2 + 4xy + 4x + 2y + 2 > 0 ( với mọi x )
Ta có : x2 + 2x + 2
= x2 + 2x + 1 + 1
= (x + 1)2 + 1 \(\ge1\forall x\)
Vậy x2 + 2x + 2 \(>0\forall x\)
Ta có : x2 + 2x + 2
=> x2 + 2x + 1 + 1
=> ( x + 1)2 + 1 > 1\(\forall x\)
Vậy x2 + 2x + 2 > \(0\forall x\)
Chứng Minh Rằng :
x^2 + xy^2 + 2×(x + y) + 3 > 0 ( với mọi x )
chứng minh rằng \(x^2-xy+y^2>0\) với mọi x, y không đồng thời = 0
\(A=x^2-xy+y^2\)
\(\Rightarrow A=x^2-xy+\dfrac{1}{4}y^2-\dfrac{1}{4}y^2+y^2\)
\(\Rightarrow A=\left(x-\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2\)
mà \(\left(x-\dfrac{1}{2}y\right)^2\ge0;\dfrac{3}{4}y^2\ge0\)
\(\Rightarrow A=\left(x-\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2\ge0\)
\(\Rightarrow\left(x-\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2>0\) với mọi x,y không đồng thời bằng 0
Chứng minh rằng với mọi x, y khác 0 thì : \(\frac{x^3}{y}\ge-y^2+xy+x^2\).
\(bdt< =>x\left(x+y\right)\le\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{y}< =>x^2-xy+y^2\ge xy\)
\(< =>\left(x-y\right)^2\ge0\)(dpcm)
chứng minh rằng với mọi x, y >0: \(\dfrac{2}{x^2+2y^2+3}\le\dfrac{1}{xy+y+1}\)
Do \(x,y>0\) BĐT tương đương:
\(\dfrac{x^2+2y^2+3}{2}\ge xy+y+1\)
\(\Leftrightarrow x^2+2y^2+3\ge2xy+2y+2\)
\(\Leftrightarrow x^2-2xy+y^2+y^2-2y+1\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2\ge0\) (luôn đúng)
Vậy BĐT được chứng minh xong
Vì x,y>0 nên các mẫu thức dương.
BĐT<=>\(2\left(xy+y+1\right)\le x^2+2y^2+3\\ \Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)\ge0\\ \Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2\ge0\left(1\right)\)
(1) đúng với mọi x,y>0 nên BĐT đã cho được chứng minh.
Dấu "=" xảy ra khi và chỉ khi x=y=1.
Chứng minh rằng với mọi x, y > 0 ta có \(\frac{2}{x^2+2y^2+3}< =\frac{1}{xy+y+1}\)
\(\frac{2}{x^2+y^2+y^2+1+2}\le\frac{2}{2xy+2y+2}=\frac{1}{xy+y+1}\)
Dấu "=" xảy ra khi \(x=y=1\)
chứng minh rằng với mọi x;y ta có:
a)x^2+xy+y^2 + 1 >0
b) 5x^2+10y^2-6xy-4x-2y+3>0
a, \(x^2+xy+y^2+1=x^2+\dfrac{1}{2}xy+\dfrac{1}{2}xy+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2+1\)
\(=\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2+1\)
Với mọi giá trị của \(x;y\in R\) ta có:
\(\left(x^2+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2\ge0\)
\(\Rightarrow\left(x^2+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2+1\ge1\)
Vậy............
b, \(5x^2+10y^2-6xy-4x-2y+3\)
\(=x^2-6xy+9y^2+4x^2-4x+1+y^2-2y+1+1\)
\(=x^2-3xy-3xy+9y^2+4x^2-2x-2x+1+y^2-y-y+1+1\)
\(=x\left(x-3y\right)-3y\left(x-3y\right)+2x\left(2x-1\right)-\left(2x-1\right)+y\left(y-1\right)-\left(y-1\right)+1\)
\(=\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1\)
Với mọi giá trị của \(x;y\in R\) ta có:
\(\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2\ge0\)
\(\Rightarrow\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\)
Vậy..............
Chúc bạn học tốt!!!
Chứng minh rằng:
a/x2 + xy + y2 + 1 > 0 với mọi x, y
b/x2 + 5y2 + 2x - 4xy - 10y + 14 > 0 với mọi x, y.
a/ \(x^2+xy+y^2+1\)=\(\left(x^2+2x\dfrac{y}{2}+\left(\dfrac{y}{2}\right)^2\right)+\dfrac{3y^2}{4}+1\)
=\(\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\) \(\ge\)0
vậy....
b
chứng minh rằng
a, x2-6x+10>0 với mọi x
b,x2-3x+4>0 với mọi x
c, x2+xy+y2+1>0 với mọi x,y
d, 2x2-2xy+2y2-2x+4y+8>0 với mọi x,y
\(\Leftrightarrow x^2-2.3.x+9+1=\left(x-3\right)^2+1\Rightarrow\hept{\begin{cases}\left(x-3\right)^2\ge0\\1>0\end{cases}}\Rightarrow\left(x-3\right)^2+1>0\)
\(\Leftrightarrow x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{7}{4}>0\end{cases}}\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)
\(\Leftrightarrow2.\left(x^2+xy+y^2+1\right)=x^2+2xy+y^2+x^2+y^2+2=\left(x+y\right)^2+x^2+y^2+2\)
ta có \(\left(x+y\right)^2\ge0,x^2\ge0,y^2\ge0,2>0\Rightarrow\left(x+y\right)^2+x^2+y^2+2>0\)
\(\Leftrightarrow x^2-2xy+y^2+x^2-2.1x+1+y^2+2.2.y+4+3\)\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\)
Ta có \(=\left(x-y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+2\right)^2\ge0,3>0\)\(\Rightarrow=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3>0\)
T i c k cho mình 1 cái nha mới bị trừ 50 đ