CMR: hàm số y= (-4m2+m-4)x - 3+3m+m2 nghịch biến trên tập xác định của nó.
a/ cho hàm số: y=(-3m - 2)x2. Tìm m để hàm số nghịch biến khi x < 0
b/ cho hàm số: y=(m2 - 2m + 3)x2. Xác định tính biến thiên của hàm số
c/ cho hàm số: y=(2m + 3)x2. Tìm m để hàm số đồng biến khi x>0
a.
Hàm số nghịch biến khi \(x< 0\Rightarrow-3m-2>0\Rightarrow m< -\dfrac{2}{3}\)
b.
Do \(a=m^2-2m+3=\left(m-1\right)^2+2>0;\forall m\)
\(\Rightarrow\) Hàm đồng biến khi \(x>0\) và nghịch biến khi \(x< 0\)
c.
Hàm đồng biến khi \(x>0\Rightarrow2m+3>0\)
\(\Rightarrow m>-\dfrac{3}{2}\)
Hàm số y = - 1 3 x 3 - ( m + 1 ) x 2 + ( m + 1 ) x + 1 nghịch biến trên tập xác định của nó khi:
A. - 2 < m < - 1
B. m < - 2
C. m > - 1
D. - 2 ≤ m ≤ - 1
Cho hàm số : \(y=\sqrt{x+1}\)
a/ Tìm tập xác định của hàm số
b/ Hỏi hàm số trên đồng biến hay nghịch biến trên tập xác định của nó.
Cho hàm số y=\(\sqrt{2-x+2\sqrt{1}-x}\)
1,tìm tập xác định của hàm số
2,xét hàm số đồng biến,nghịch biến trên tập xác định của nó
tìm các giá trị của m để hàm số
a) \(y=\dfrac{x+m}{x+1}\) nghịch biến trên từng khoảng xác định
b) \(y=\dfrac{2x-3m}{x-m}\) đồng biến trên từng khoảng xác định
a: TXĐ: D=R\{-1}
\(y'=\dfrac{\left(x+m\right)'\left(x+1\right)-\left(x+1\right)'\left(x+m\right)}{\left(x+1\right)^2}\)
\(=\dfrac{x+1-x-m}{\left(x+1\right)^2}=\dfrac{1-m}{\left(x+1\right)^2}\)
Để hàm số nghịch biến trên từng khoảng xác định thì \(y'< 0\forall x\)
=>\(\dfrac{1-m}{\left(x+1\right)^2}< 0\)
=>1-m<0
=>m>1
b: TXĐ: D=R\{m}
\(y=\dfrac{2x-3m}{x-m}\)
=>\(y'=\dfrac{\left(2x-3m\right)'\left(x-m\right)-\left(2x-3m\right)\left(x-m\right)'}{\left(x-m\right)^2}\)
\(=\dfrac{2\left(x-m\right)-\left(2x-3m\right)}{\left(x-m\right)^2}=\dfrac{2x-2m-2x+3m}{\left(x-m\right)^2}\)
\(=\dfrac{m}{\left(x-m\right)^2}\)
Để hàm số đồng biến trên từng khoảng xác định thì \(y'>0\forall x\)
=>\(\dfrac{m}{\left(x-m\right)^2}>0\)
=>m>0
Cho hàm số y=(m2-2m+3)x-4 (d) ,(với m là tham số)
1.Chứng minh rằng với mọi hàm số luôn đồng biến trên tập xác định của nó.
2.Tìm m để (d) đi qua A(2;8)
3.Tìm m để (d) song song với đường thẳng (d'):y=3x +m-4
2) Để (d) đi qua A(2;8) thì Thay x=2 và y=8 vào hàm số \(y=\left(m^2-2m+3\right)x-4\), ta được:
\(\left(m^2-2m+3\right)\cdot2-4=8\)
\(\Leftrightarrow2m^2-4m+6-4-8=0\)
\(\Leftrightarrow2m^2-4m-6=0\)
\(\Leftrightarrow2m^2-6m+2m-6=0\)
\(\Leftrightarrow2m\left(m-3\right)+2\left(m-3\right)=0\)
\(\Leftrightarrow\left(m-3\right)\left(2m+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m-3=0\\2m+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=3\\2m=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=3\\m=-1\end{matrix}\right.\)
Vậy: Để (d) đi qua A(2;8) thì \(m\in\left\{3;-1\right\}\)
Cho hàm số y = x 2 - m 2 + 2 m + 1 x - m . Tìm tập hợp các tham số m để hàm số đồng biến trên các khoảng xác định của nó?
A . m < - 1 3
B . m < - 1 2
C . m < - 1
D . m < - 1 4
Cho các hàm số y = log 2 x , y = e π x , y = ln x , y = 3 x . Trong các hàm số trên có bao nhiêu hàm số nghịch biến trên tập xác định của nó?
A. 3
B. 2
C. 4
D. 1
Đáp án D
Hàm số nghịch biến trên tập xác định của nó là y = e π x .
Cho y = m x 2 − m + 2 x + m 2 − 2 m + 2 x − 1 . Tìm m để hàm số luôn đồng biến trên tập xác định của nó
A. 0 < m ≤ 2
B. 1 < m ≤ 2
C. 0 < m ≤ 1
D. m < 0 m > 3
Đáp án A
T X D : D = ℝ \ 1
Ta có: y = m x 2 − m + 2 x + m 2 − 2 m + 2 x − 1 = m x − 2 + m 2 − 2 m x − 1 ⇒ y ' = m − m 2 − 2 m x − 1 2
hàm số luôn đồng biến trên tập xác định của nó khi y ' ≥ 0 ∀ x ∈ D (dấu bằng xảy ra tại hữu hạn điểm)
⇔ m − m 2 − 2 m x − 1 2 ≥ 0 ∀ x ∈ D ⇔ x x − 1 2 ≥ m 2 − 2 m ∀ x ∈ D
Với m = 0 ⇒ y ' = 0 ∀ x ∈ D (không thỏa mãn dấu bằng xảy ra tại hữu hạn điểm)
Khi đó hàm số luôn đồng biến trên tập xác định m > 0 m 2 − 2 m ≤ 0 ⇔ 0 < m ≤ 2