chứng minh rằng a2+b2+1 lớn hơn hoặc bằng ab+a+b với mọi a,b
Chứng minh a2 + b2 lớn hơn hoặc bằng 1/2 với a+b lớn hơn hoặc bằng 1.
Áp dụng BĐT Bunhiacopski, ta có:
a2 + b2 >= (a + b)2/2 >= 12/2 = 1/2 (đpcm)
Dấu bằng xảy ra khi a = b = 1/2
Chứng minh rằng: a2 + b2 + c2 + d2 (>= lớn hơn hoặc bằng) ab+ac+ad
-Áp dụng BĐT AM-GM ta có:
\(\left\{{}\begin{matrix}\dfrac{1}{4}a^2+b^2\ge ab\\\dfrac{1}{4}a^2+c^2\ge ac\\\dfrac{1}{4}a^2+d^2\ge ad\end{matrix}\right.\)
-Cộng các vế, ta được:
\(\dfrac{3}{4}a^2+b^2+c^2+d^2\ge ab+ac+ad\)
\(\Rightarrow\dfrac{3}{4}a^2+b^2+c^2+d^2+\dfrac{1}{4}a^2\ge ab+ac+ad\) (vì \(\dfrac{1}{4}a^2\ge0\forall a\))
\(\Leftrightarrow a^2+b^2+c^2+d^2\ge ab+ac+ad\left(đpcm\right)\)
-Dấu "=" xảy ra khi \(a=b=c=d=0\)
4. Tìm giá trị lớn nhất của các biểu thức a. A = 5 – 8x – x2 b. B = 5 – x2 + 2x – 4y2 – 4y 5. a. Cho a2 + b2 + c2 = ab + bc + ca chứng minh rằng a = b = c b. Tìm a, b, c biết a2 – 2a + b2 + 4b + 4c2 – 4c + 6 = 0 6. Chứng minh rằng: a. x2 + xy + y2 + 1 > 0 với mọi x, y b. x2 + 4y2 + z2 – 2x – 6z + 8y + 15 > 0 Với mọi x, y, z 7. Chứng minh rằng: x2 + 5y2 + 2x – 4xy – 10y + 14 > 0 với mọi x, y.
cho a,b,c lớn hơn hoặc bằng căn 3 thỏa mãn a2+b2+c2 =3 Chứng minh a+b+c lơn hơn hoặc bằng căn 3
Chứng minh với (a,b) =1 thì ước số chung lớn nhất của a+b và a2+ b2 bằng 1 hoặc 2.
chứng minh rằng với mọi a,b ta luôn có a^2+b^2+1 lớn hơn hoặc bằng ab+a+b
Cho a,b,c không âm. Chứng minh rằng :
a) a2 + b2 + c2 + 2abc + 2 > hoặc=ab +bc +ca +a+b+c
b)a2 + b2 +c2 +abc +4 > hoặc = 2(ab+bc+ca)
c) 3(a2 + b2 + c2) + abc +4 > hoặc =4 (ab+bc+ca)
d) 3(a2 + b2 + c2) + abc +80 > 4(ab+bc+ca) + 8(a+b+c)
Chứng minh rằng
a, a^2 + b^2 lớn hơn hoặc bằng 2ab với mọi a , b
b, a^2 + b^2 =C^2 lớn hơn hoặ bằng ab + bc + ca với mọi a , b
c , a^2 + b^2 lớn hơn hoặc bằng (a + b)^2 / 2 với mọi a , b
giải chi tiết giùm nha mình like cho
\(a^2+b^2=a^2-2ab+b^2+2ab=\left(a-b\right)^2+2ab\)
Vì \(\left(a-b\right)^2\ge0\Rightarrow\left(a-b\right)^2+2ab\ge2ab\left(dpcm\right)\)