so sánh \(\frac{13-2\sqrt{3}}{6}\) và \(\sqrt{2}\)
so sánh : \(\frac{13-2\sqrt{3}}{6}\) và \(\sqrt{2}\)
So sánh
\(\frac{13-2\sqrt{3}}{6}\) và \(\sqrt{2}\)
Ta có: \(\frac{13-2\sqrt{3}}{6}>\frac{13-2\sqrt{4}}{6}=\frac{9}{6}=1,5>\sqrt{2}\)
Ta có: \(\frac{13-2\sqrt{3}}{6}>\frac{13-2\sqrt{4}}{6}\)
mà \(\frac{13-2\sqrt{4}}{6}=\frac{13-2.2}{6}=\frac{13-4}{6}=\frac{9}{6}=\frac{3}{2}=\sqrt{\frac{9}{4}}=\sqrt{2,25}>\sqrt{2}\)
\(\Rightarrow\frac{13-2\sqrt{3}}{6}>\sqrt{2}\)
So Sánh a,\(\frac{3\sqrt{7}+5\sqrt{2}}{\sqrt{5}}\)và 6,9 \(\sqrt{13}-\sqrt{12}\)và \(\sqrt{7}-\sqrt{6}\)
so sánh \(\frac{13-2\sqrt{3}}{6}\) và \(\sqrt{2}\) ( giải ra nhé, k ghi lớn bé k)
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.
\(\frac{\left(13-2\sqrt{3}\right)}{6}>2\Leftrightarrow\frac{\left(13-2\sqrt{3}\right)^2}{36}>2\)
\(\Leftrightarrow\frac{181-52\sqrt{3}}{36}>2\Leftrightarrow181-52\sqrt{3}>36.2=72\)
\(\Leftrightarrow109>52\sqrt{3}\Leftrightarrow109^2>\left(52\sqrt{3}\right)^2\Leftrightarrow3769>0\)
Giả sử: \(\frac{13-2\sqrt{3}}{6}>\sqrt{2}\)
\(\Leftrightarrow\left(\frac{13-2\sqrt{3}}{6}\right)^2>\left(\sqrt{2}\right)^2\)
\(\Leftrightarrow\frac{181-52\sqrt{3}}{36}>2\)
\(\Leftrightarrow181-52\sqrt{3}>72\Leftrightarrow109>52\sqrt{3}\)
\(\Leftrightarrow109^2>\left(52\sqrt{3}\right)^2\Leftrightarrow11881>8112\)
Vậy giả sử đúng
\(\frac{13-2\sqrt{3}}{6}>\sqrt{2}\)
Hoạt động 4
Thực hiện các hoạt động sau:
a) So sánh: \({2^{\frac{6}{3}}}\) và \({2^2}\)
b) So sánh: \({2^{\frac{6}{3}}}\) và \(\sqrt[3]{{{2^6}}}\)
a: \(2^{\dfrac{6}{3}}=2^2\)
b: \(2^{\dfrac{6}{3}}=2^2=4\)
\(\sqrt[3]{2^6}=\sqrt[3]{64}=4\)
=>\(2^{\dfrac{6}{3}}=\sqrt[3]{2^6}\)
Bài 1: So sánh:\(\frac{15-2\sqrt{10}}{3}\) và \(\sqrt{15}\)
Bài 2: Tính:
1, \(\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
2, \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
3, \(\frac{1}{1+\sqrt{2}}\:+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2019}+\sqrt{2020}}\)
B2:
3) \(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2019}+\sqrt{2020}}\)
\(=\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{2020}-\sqrt{2019}}{2020-2019}\)
\(=\sqrt{2}-1+\sqrt{3}-2+...+\sqrt{2020}-\sqrt{2019}\)
\(=\sqrt{2020}-1\)
So sánh :
a, \(\sqrt{8}+\sqrt{15}\) và \(\sqrt{65}-1\)
b, \(\frac{13-2\sqrt{3}}{6}\)và \(\sqrt{2}\)
a) \(\sqrt{8}+\sqrt{15}< \sqrt{9}+\sqrt{16}=3+4=7\)
\(\sqrt{65}-1>\sqrt{64}-1=8-1=7\)
\(\Rightarrow\sqrt{8}+\sqrt{15}< \sqrt{65}-1\)
b) \(\frac{13-2\sqrt{3}}{6}>\frac{13-2\sqrt{4}}{6}=1,5\)
mà 1,52 = 2,25 ; \(\sqrt{2}^2=2\)
\(\Rightarrow1,5>\sqrt{2}\)hay \(\frac{13-2\sqrt{3}}{6}>\sqrt{2}\)
So sánh : \(\frac{3\sqrt{7}+5\sqrt{2}}{\sqrt{5}}\) và \(6,9\)
\(\sqrt{13}-\sqrt{12}\) và \(\sqrt{7}-\sqrt{6}\)
a, \(\frac{3\sqrt{7}+5\sqrt{2}}{\sqrt{5}}=\frac{3\sqrt{35}+5\sqrt{10}}{5}=\frac{3\sqrt{35}+\sqrt{250}}{5}\)
Ta có: \(3\sqrt{35}< 3\sqrt{36}=3\cdot6=18< 18,5\)
\(\sqrt{250}< \sqrt{256}=16\)
\(\Rightarrow3\sqrt{35}+\sqrt{250}< 18,5+16=34,5\Rightarrow\frac{3\sqrt{35}+5\sqrt{10}}{5}< \frac{34,5}{5}=6,9\)
b,\(\sqrt{13}-\sqrt{12}=\frac{1}{\sqrt{13}+\sqrt{12}};\sqrt{7}-\sqrt{6}=\frac{1}{\sqrt{7}+\sqrt{6}}\)
Vì \(\sqrt{13}+\sqrt{12}>\sqrt{7}+\sqrt{6}\)nên \(\frac{1}{\sqrt{13}+\sqrt{12}}< \frac{1}{\sqrt{7}+\sqrt{6}}\)
\(\Rightarrow\sqrt{13}-\sqrt{12}< \sqrt{7}-\sqrt{6}\)
So sánh: \(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\) và \(\sqrt{3}+1\)
\(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
\(=\sqrt{6+2\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}}\)
\(=\sqrt{6+2\sqrt{5-\left(\sqrt{12}+1\right)}}\)
\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\sqrt{6+2\left(\sqrt{3}-1\right)}\)
\(=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)