giải hệ phương trình:
\(\hept{\begin{cases}x^2y^2-2x+y^2=0\\2x^3+3x^2+6y-12x+13=0\end{cases}}\)
Giải hệ phương trình:
\(1.\hept{\begin{cases}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{z}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{cases}}\)
\(2.\hept{\begin{cases}2x^3+2z^2+3z+3=0\\2y^3+2x^2+3x+3=0\\2z^3+2y^2+3y+3=0\end{cases}}\)
\(\hept{\begin{cases}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{z}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{cases}}\)
\(\Leftrightarrow x^2-2x\sqrt{y}+2y+y^2-2y\sqrt{z}+2z+z^2-2z\sqrt{x}+2x=x+y+z\)
\(\Leftrightarrow\left(x-\sqrt{y}\right)^2+\left(y-\sqrt{z}\right)^2+\left(z-\sqrt{x}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\sqrt{y}=0\\y-\sqrt{z}=0\\z-\sqrt{x}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\sqrt{y}\\y=\sqrt{z}\\z=\sqrt{x}\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}x=y=z=0\\x=y=z=1\end{cases}}\)
giải các hệ phương trình sau
a) \(\hept{\begin{cases}x^2+y^2-2xy=1\\2x^2+2y^2-2xy-y=0\end{cases}}\)
b)\(\hept{\begin{cases}xy+2x-y-2=0\\xy-3x+2y=0\end{cases}}\)
hãy dùng cái đầu bạn nhé :))))
\(a,\hept{\begin{cases}\left(x-y\right)^2=1\\2x^2+2y^2-2xy-y=0\end{cases}}\)
Xét từng TH với x-y=1 và x-y=-1
\(b,\hept{\begin{cases}\left(x-1\right)\left(y+2\right)=0\\xy-3x+2y=0\end{cases}}\)
Xét từng TH x=1 và y=-2
109ubbbbbbbhy3333333333333
giải hệ phương trình \(\hept{\begin{cases}x^2-2y^2+3y-3x+xy=0\\2x^2-15xy+4y^2-12x+45y-24=0\end{cases}}\)
Gợi ý này bây bê
Lấy pt (1) nhân với 2 rồi nhân chia cộng trừ các kiểu với pt (2)
Từ đó rồi blblblblbll sẽ tìm đc mqh x vs y
Tự túc
Giải hệ phương trình:
\(\hept{\begin{cases}x^3+y^2x+3x^2+y^2+3x-2y+1=0\\2y^3+xy^2+y^2-3x-3=0\end{cases}}\)
Giải hệ phương trình
\(\hept{\begin{cases}x^2+y^2-2x-y=0\\2y=2x^2-3x\end{cases}}\)
\(\hept{\begin{cases}2y=2x^2-3x\left(1\right)\\x^2+y^2-2x-y=0\left(2\right)\end{cases}}\)
Từ PT (1) suy ra \(y=\frac{2x^2-3x}{2}\), thay vào phương trình (2), ta được:
\(x^2+\frac{\left(2x^2-3x\right)^2}{4}-2x-\frac{2x^2-3x}{2}=0\)
\(\Leftrightarrow\frac{4x^4-12x^3+9x^2-2x}{4}=0\)\(\Leftrightarrow4x^4-12x^3+9x^2-2x=0\)\(\Leftrightarrow x\in\left\{2;\frac{1}{2};0\right\}\)
Từ đây tự tìm nốt nhé
Giải hệ phương trình
\(\hept{\begin{cases}2x^2+3xy+2x+y=0\\x^2+2xy+2y^2+3x=0\end{cases}}\)
\(\hept{\begin{cases}2x^2+3xy+2x+y=0\left(1\right)\\x^2+2xy+2y^2+3x=0\left(2\right)\end{cases}}\)
PT(1) - PT(2), ta được : \(x^2+xy-x+y-2y^2=0\Leftrightarrow\left(x^2-y^2\right)+\left(xy-x\right)-\left(y^2-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+x\left(y-1\right)-y\left(y-1\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+\left(x-y\right)\left(y-1\right)=0\Leftrightarrow\left(x-y\right)\left(x+2y-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x=1-2y\end{cases}}\)
cứ thế mà giải , đến đây dễ rồi
Giải hệ phương trình:
\(\hept{\begin{cases}2x^2-15xy+4y^2-12x+45y-24=0\\x^2+xy-2y^2-3x-3y\end{cases}}\)
PT trình thứ 2 thiếu vp
Giải kiểu gì được khi một trong những nghiệm của nó là thế này:
Có lẽ chị đánh nhầm đề chăng?
Giải hệ phương trình: \(\hept{\begin{cases}3x^2+2y^2-4xy+x+8y-4=0\\x^2-2y^2+2x+y-3=0\end{cases}}\)
Giải hệ phương trình
1) \(\hept{\begin{cases}xy^2-2y+3x^2=0\\y^2+x^2y+2x=0\end{cases}}\)
2) \(\hept{\begin{cases}x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=1\\x+y+\frac{1}{x}+\frac{1}{y}=3\end{cases}}\)
Đặt x +\(\frac{1}{x}\) =a, y+\(\frac{1}{y}\)=b
hpt<=>\(\hept{\begin{cases}a^2-2+b^2-2=1\\a+b=3\end{cases}}\) | |
---|---|
đến đây thì dễ rồi , có tổng với tích | |
bạn tìm ra a,b rồi tương tự tìm x,y |