Cho \(a+b\le1\)
CMR \(a+b+\frac{1}{a}+\frac{1}{b}\ge5\)
Cho a, b >0 \(a+b\le1\)
CMR a+b \(\dfrac{1}{a}+\dfrac{1}{b}\ge5\)
Áp dụng BĐT AM-GM ta có:
\(A=a+b+\dfrac{1}{a}+\dfrac{1}{b}\)
\(=\left(a+\dfrac{1}{4a}\right)+\left(b+\dfrac{1}{4b}\right)+3\left(\dfrac{1}{4a}+\dfrac{1}{4b}\right)\)
\(=2\sqrt{a\cdot\dfrac{1}{4a}}+2\sqrt{b\cdot\dfrac{1}{4b}}+3\dfrac{\left(1+1\right)^2}{4\left(a+b\right)}\)
\(\ge2\cdot\dfrac{1}{2}+2\cdot\dfrac{1}{2}+\dfrac{3\cdot4}{4}=5=VP\)
Xảy ra khi \(a=b=\dfrac{1}{2}\)
Cho các số thực dương a,b,c thỏa mãn a + b + c = 3.CMR:
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2\left(a^2+b^2+c^2\right)}{3}\ge5\)
Dễ thấy các hệ số tương đồng nhau nên có thể biến đổi bđt về dạng sau :
\(\left(\frac{1}{a^2}+\frac{2a^2}{3}\right)+\left(\frac{1}{b^2}+\frac{2b^2}{3}\right)+\left(\frac{1}{c^2}+\frac{2c^2}{3}\right)\ge5\)
Ta đi chứng minh bđt phụ sau : \(\frac{1}{a^2}+\frac{2a^2}{3}\ge\frac{7}{3}-\frac{2a}{3}\)(1)
\(Bđt\left(1\right)\Leftrightarrow\frac{1}{a^2}+\frac{2a^2}{3}-\frac{7}{3}+\frac{2a}{3}\ge0\)
\(\Leftrightarrow\frac{3+2a^4-7a^2+2a^3}{3a^2}\ge0\)
\(\Leftrightarrow\frac{2\left(a^4-2a^2+1\right)+2a^3-3a^2+1}{3a^2}\ge0\)
\(\Leftrightarrow\frac{2\left(a^2-1\right)^2+2a^2\left(a-1\right)-\left(a^2-1\right)}{3a^2}\ge0\)
\(\Leftrightarrow\frac{2\left(a-1\right)^2\left(a+1\right)^2+2a^2\left(a-1\right)-\left(a-1\right)\left(a+1\right)}{3a^2}\ge0\)
\(\Leftrightarrow\frac{\left(a-1\right)\left[2\left(a-1\right)\left(a+1\right)^2+2a^2-a-1\right]}{3a^2}\ge0\)
\(\Leftrightarrow\frac{\left(a-1\right)\left[2\left(a-1\right)\left(a+1\right)^2+\left(a-1\right)\left(2a+1\right)\right]}{3a^2}\ge0\)
\(\Leftrightarrow\frac{\left(a-1\right)^2\left[2\left(a+1\right)^2+2a+1\right]}{3a^2}\ge0\)(Luôn đúng do a > 0 nên [...] > 0)
Dấu "=" <=> a = 1
Thiết lập các bđt còn lại \(\frac{1}{b^2}+\frac{2b^2}{3}\ge\frac{7}{3}-\frac{2b}{3}\)
\(\frac{1}{c^2}+\frac{2c^2}{3}\ge\frac{7}{3}-\frac{2c}{3}\)
Cộng 3 vế của bdtd lại ta được
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2\left(a^2+b^2+c^2\right)}{3}\ge7-\frac{2\left(a+b+c\right)}{3}=7-\frac{2.3}{3}=5\)
Dấu "=" xảy ra khi a = b = c = 1
Tìm điểm rơi a=b=c=1 Min=5
Rồi áp dụng UCT giải
cho a,b,c ∈ [0 ; 1]. Cmr: \(\frac{a}{b+c+1}+\frac{b}{a+c+1}+\frac{c}{a+b+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)\le1\)
Cho a, b, c > 0 thỏa abc=1. Cmr:
\(\frac{a}{a^3+a+1}+\frac{b}{b^3+b+1}+\frac{c}{c^3+c+1}\le1\)
cho a, b>0 thỏa mãn a+b=1. CMR:\(8\left(a^4+b^4\right)+\frac{1}{ab}\ge5\)
cho a, b>0 thỏa mãn a+b=1. CMR:\(8\left(a^4+b^4\right)+\frac{1}{ab}\ge5\)
cho \(a,b,c\in\left[0,1\right].CMR:\frac{a}{b+c+1}+\frac{b}{a+c+1}+\frac{c}{a+b+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)\le1\)
Cho a,b,c dương thoả mãn abc=1. CMR
\(\frac{1}{1+a+b^2}+\frac{1}{1+b+c^2}+\frac{1}{1+c+a^2}\le1\)
cho a , b , c là các số thực dương thỏa mãn điều kiện abc = 1 . CMR : \(\frac{a}{a^3+a+1}+\frac{b}{b^3+b+1}+\frac{c}{c^3+c+1}\le1\)
Mình có cách này,không chắc lắm:
\(VT=\frac{a}{a\left(a^2+bc+1\right)}+\frac{b}{b\left(b^2+ac+1\right)}+\frac{c}{c\left(c^2+ab+1\right)}\) (làm tắt,bạn tự hiểu nha)
\(=\frac{1}{a^2+bc+1}+\frac{1}{b^2+ac+1}+\frac{1}{c^2+ab+1}\)
\(\le\frac{1}{3}\left(\frac{1}{\sqrt[3]{a}}+\frac{1}{\sqrt[3]{b}}+\frac{1}{\sqrt[3]{c}}\right)\)
\(=\frac{1}{3}\left[\left(1+1+1\right)-\left(\frac{\sqrt[3]{a}-1}{\sqrt[3]{a}}+\frac{\sqrt[3]{b}-1}{\sqrt[3]{b}}+\frac{\sqrt[3]{c}-1}{\sqrt[3]{c}}\right)\right]\)
\(=1-\frac{1}{3}\left(\frac{\sqrt[3]{a}-1}{\sqrt[3]{a}}+\frac{\sqrt[3]{b}-1}{\sqrt[3]{b}}+\frac{\sqrt[3]{c}-1}{\sqrt[3]{c}}\right)\)
Áp dụng BĐT Cô si với biểu thức trong ngoặc:
\(=1-\frac{1}{3}\left(\frac{\sqrt[3]{a}-1}{\sqrt[3]{a}}+\frac{\sqrt[3]{b}-1}{\sqrt[3]{b}}+\frac{\sqrt[3]{c}-1}{\sqrt[3]{c}}\right)\)
\(\le1-\sqrt[3]{\left(\sqrt[3]{a}-1\right)\left(\sqrt[3]{b}-1\right)\left(\sqrt[3]{c-1}\right)}\le1^{\left(đpcm\right)}\)
Dấu "=" xảy ra khi a = b = c = 1
Ta c/m bđt sau:
\(a^3+1\ge a^2+a\)
\(\Leftrightarrow a^3+1-a^2-a\ge0\Leftrightarrow a\left(a^2-1\right)-\left(a^2-1\right)\ge0\Leftrightarrow\left(a-1\right)^2\left(a+1\right)\ge0\)
\(\Rightarrow\frac{a}{a^3+a+1}\le\frac{a}{a^2+2a}=\frac{1}{a+2}\)
\(\Rightarrow\frac{a}{a^3+a+1}+\frac{b}{b^3+b+1}+\frac{c}{c^3+c+1}\le\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\)
Đặt \((a,b,c)\rightarrow(\frac{x}{y},\frac{y}{z},\frac{z}{x})\)
\(\Rightarrow\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}=\frac{y}{x+2y}+\frac{z}{y+2z}+\frac{x}{z+2x}=\frac{1}{2}\left(1-\frac{x}{x+2y}+1-\frac{y}{y+2z}+1-\frac{z}{z+2x}\right)=\frac{3}{2}-\frac{1}{2}\left(\frac{x^2}{x^2+2xy}+\frac{y^2}{y^2+2yz}+\frac{z^2}{z^2+2xy}\right)\)\(\le\frac{3}{2}-\frac{1}{2}\left(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}\right)=\frac{3}{2}-\frac{1}{2}.\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)
Dấu bằng xảy ra khi a=b=c=1