2. Tìm giá trị của m để phương trình sau có 2 nghiệm cùng dấu. Khi đó 2 nghiệm mang dấu gì ? a) x - 2mx + 5m - 4= 0 (1) b) ma + mr +3 0 (2) 3. Cho phương trình: (m + 1)x2 + 2(m + 4)x + m+1 = 0 Tìm m để phương trình có: a) Một nghiệm b) Hai nghiệm phân biệt cùng dấu c) Hai nghiệm âm phân biệt 4. Cho phương trình (m - 4)x2 – 2(m- 2)x + m-1 = 0 Tìm m để phương trình a) Có hai nghiệm trái dấu và nghiệm âm có GTTÐ lớn hơn b) Có 2 nghiệm trái dấu và bằng nhau về GTTÐ c) Có 2 nghiệm trái dấu d) Có nghiệm kép dương. e) Có một nghiệm bằng 0 và một nghiệm dương.
Cho phương trình \(x^3+\left(1+m\right)x-m^2=0\)
1) Tìm m để phương trình có đúng 1 nghiệm
2) Tìm m để PT có 2 nghiệm
3) Tìm m để phương trình có 3 nghiệm
4) Tìm m để phương trình có 3 nghiệm dương phân biệt
5) Tìm m để phương trình có 2 nghiệm âm phân biệt
Cho phương trình :
\(\left(m-1\right)x^2+2\left(m-1\right)x-m=0\)
Tìm m để phương trình có 2 nghiệm phân biệt cùng âm
Cho f(x)=x^2 -2(m-2)x+m+10. Định m để:
a. Phương trình f(x)=0 có một nghiệm x= 1 và tính nghiệm kia
b. Phương trình f(x)=0 có nghiệm kép. Tính nghiệm kép đó.
c. Tìm m để phương trình f(x)=0 có 2 nghiệm âm phân biệt.
d. Tìm m để f(x)<0 có nghiệm đúng với mọi xϵR
a.
\(f\left(x\right)=0\) có nghiệm \(x=1\Rightarrow f\left(1\right)=0\)
\(\Rightarrow1-2\left(m-2\right)+m+10=0\)
\(\Rightarrow m=15\)
Khi đó nghiệm còn lại là: \(x_2=\dfrac{m+10}{x_1}=\dfrac{25}{1}=25\)
b.
Pt có nghiệm kép khi: \(\Delta'=\left(m-2\right)^2-\left(m+10\right)=0\)
\(\Rightarrow m^2-5m-6=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=6\end{matrix}\right.\)
Với \(m=-1\) nghiệm kép là: \(x=-\dfrac{b}{2a}=m-2=-3\)
Với \(m=6\) nghiệm kép là: \(x=-\dfrac{b}{2a}=m-2=4\)
c.
Pt có 2 nghiệm âm pb khi:
\(\left\{{}\begin{matrix}\Delta'=m^2-5m-6>0\\x_1+x_2=2\left(m-2\right)< 0\\x_1x_2=m+10>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< -1\\m>6\end{matrix}\right.\\m< 2\\m>-10\end{matrix}\right.\) \(\Rightarrow-10< m< -1\)
d.
\(f\left(x\right)< 0;\forall x\in R\Rightarrow\left\{{}\begin{matrix}a=1< 0\left(\text{vô lý}\right)\\\Delta'=m^2-5m-6< 0\end{matrix}\right.\)
Không tồn tại m thỏa mãn
Cho phương trình x² +(m+3)x-2m+2=0 a. Tìm m để phương trình có hai nghiệm trái dấu. b. Tìm m để phương trình có hai nghiệm dương phân biệt. c. Tìm m để phương trình có hai nghiệm âm phân biệt. d. Tìm m để phương trình có ít một nghiệm dương.
Sửa đề: \(x^2+\left(m+3\right)x+2m+2=0\)
a: Để phương trình có hai nghiệm trái dấu thì 2m+2<0
hay m<-1
b: \(\text{Δ}=\left(m+3\right)^2-4\left(2m+2\right)\)
\(=m^2+6m+9-8m-8\)
\(=m^2-2m+1=\left(m-1\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm với mọi m
Để phương trình có hai nghiệm dương phân biệt thì \(\left\{{}\begin{matrix}m-1< >0\\2m+2>0\\m+3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m< >1\end{matrix}\right.\)
cho phương trình: \(\left(m-1\right)x^2+2\left(m-1\right)x-m=0\)
a) Tìm m để phương trình có nghiệm kép. tìm nghiệm
b) tìm m để phương trình có 2 nghiệm phân biệt đều âm
a) PT có nghiệm kép nếu
\(\hept{\begin{cases}m-1\ne0\\\Delta'=\left(m-1\right)^2+m\left(m-1\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}m\ne1\\\left(m-1\right)\left(2m-1\right)=0\end{cases}\Leftrightarrow}m=\frac{1}{2}}\)
Vậy \(m=\frac{1}{2}\)thì pt có nghiệm kép
\(x_1=x_2=-\frac{b}{2a}=-\frac{2\left(m-1\right)}{2\left(m-1\right)}=-1\)
b) Để pt có nghiệm phân biệt đều âm thì
\(\hept{\begin{cases}m-1\ne0\\\Delta'=\left(m-1\right)\left(2m-1\right)>0\end{cases}}\)
\(\hept{\begin{cases}x_1\cdot x_2=-\frac{m}{m-1}>0\\x_1+x_2=\frac{2\left(m-1\right)}{m-1}< 0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}m>1\\m< \frac{1}{2}\end{cases}}\)và \(0< m< 1\)
Vậy 0<m<\(\frac{1}{2}\)
định gõ ấn f5 cái thì thấy bạn làm xong r :((
giải nhanh quá !
thế kết luận như thế nào vậy?
cho pt bậc 2 `(m+2)x^2- 2(m+1)x +m -4 =0` để phương trình có hai nghiệm phân biệt thoả mãn trái dấu , cùng dấu , cùng âm
Đây là toán Viet của lớp 10 chứ ko phải lớp 9, lớp 9 chưa học giải BPT bậc 2 để giải các điều kiện cho bài toán này:
\(\Delta'=\left(m+1\right)^2-2\left(m+2\right)\left(m-4\right)=-m^2+6m+17\)
- Pt có 2 nghiệm pb trái dấu khi:
\(ac=2\left(m+2\right)\left(m-4\right)< 0\Rightarrow-2< m< 4\)
- Pt có 2 nghiệm cùng dấu khi:
\(\left\{{}\begin{matrix}\Delta'=-m^2+6m+17\ge0\\ac=2\left(m+2\right)\left(m-4\right)>0\\\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3-\sqrt{26}\le m\le3+\sqrt{26}\\\left[{}\begin{matrix}m>4\\m< -2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}3-\sqrt{26}\le m< -2\\4< m\le3+\sqrt{26}\end{matrix}\right.\) (1)
- Pt có 2 nghiệm cùng âm khi pt có 2 nghiệm cùng dấu đồng thời:
\(x_1+x_2=\dfrac{m+1}{m+2}< 0\Rightarrow-2< m< -1\) (2)
Kết hơp (1);(2) \(\Rightarrow m\in\varnothing\)
Cho phương trình: \(\left(m-1\right)x^2-4mx+4m+1=0.\)
a) Giải phương trình khi m=2
b) Tìm m để phương trình vô nghiệm
c) Tìm m để phương trình có 2 nghiệm phân biệt. Tìm biểu thức liên hệ giữa 2 nghiệm độc lập với m
d) Tìm m để phương trình có 2 nghiệm phân biệt thỏa mãn x1 + x2 + x1x2 = 17
e) Tìm m để phương trình có 2 nghiệm dương phân biệt.
f) Tìm m để phương trình có 2 nghiệm âm phân biệt.
g) Tìm m để phương trình có 2 nghiệm trái dấu
h) Tìm m để \(\left|x_1+x_2\right|=2\sqrt{7}.\)
i) Tìm m để nghiệm này bằng 2 lần nghiệm kia
a, Với m=2
\(Pt\Leftrightarrow x^2-8x+9=0\Leftrightarrow\left(x-4\right)^2=7\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=\sqrt{7}\\x-4=-\sqrt{7}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{7}+4\\x=-\sqrt{7}+4\end{cases}}\)
Vậy pt có 2 nghiệm phân biệt \(\orbr{\begin{cases}x=\sqrt{7}+4\\x=-\sqrt{7}+4\end{cases}}\)
1)cho phương trình mx^2-2(m+2)x+m=0
a) định m để phương trình có nghiệm
b)định m để phương trình có 2 nghiệm phân biệt đều âm