Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
NGUYỄN ĐẠT
Xem chi tiết
Nguyễn Ngọc Khánh Huyền
15 tháng 12 2021 lúc 19:56
Chou
15 tháng 12 2021 lúc 20:06

Nè bạnundefined

Phác Kiki
Xem chi tiết
Play Io Games Nigga
Xem chi tiết
TV Cuber
27 tháng 5 2022 lúc 23:19

\(x+\sqrt{4-x^2}=2\)

\(\Leftrightarrow4-x^2=\left(2-x\right)^2\)

\(\Leftrightarrow4-x^2=4-8x+x^2\)

\(\Leftrightarrow4-x^2-4+8x-x^2=0\)

\(\Leftrightarrow8x-2x^2=0\)

\(\Leftrightarrow2x\left(4-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\4-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

TV Cuber
28 tháng 5 2022 lúc 7:07

\(x+\sqrt{1-x^2}=1\)

\(\Leftrightarrow1-x^2=\left(1-x\right)^2\)

\(\Leftrightarrow1-x^2=1-2x+x^2\)

\(\Leftrightarrow1-x^2-1+2x-x^2=0\)

\(\Leftrightarrow2x-2x^2=0\)

\(\Leftrightarrow2x\left(1-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\1-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

DAI HUYNH
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
25 tháng 12 2022 lúc 10:31

\(a,\dfrac{1}{2}x=3+2\)

\(\dfrac{1}{2}x=5\)

\(x=5\div\dfrac{1}{2}\)

\(x=10\)

\(b,\dfrac{1}{4}x^2-\sqrt{36}=10\)

\(\dfrac{1}{4}x^2-6=10\)

\(\dfrac{1}{4}x^2=10+6\)

\(\dfrac{1}{4}x^2=16\)

\(x^2=16\div\dfrac{1}{4}\)

\(x^2=64\)

\(x^2=\left(8\right)^2\)

\(\Rightarrow x=8\)

Quách Thị Hồng Phương
Xem chi tiết
Ha Thu
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 7 2021 lúc 23:13

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB, ta được:

\(AM\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC, ta được:

\(AN\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

Ha Anh Le Thi
Xem chi tiết
vanchat ngo
27 tháng 11 2021 lúc 11:22

She likes playing guitar.

Truong Luan
22 tháng 1 2022 lúc 10:44

dài thế

Nguyễn Trang Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 7 2021 lúc 14:07

Đặt \(A=\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)

\(\Leftrightarrow A^3=2+\sqrt{5}+2-\sqrt{5}+3\cdot\sqrt[3]{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}\cdot\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)\)

\(\Leftrightarrow A^3=4+3\cdot\left(-1\right)\cdot A\)

\(\Leftrightarrow A^3=4-3A\)

\(\Leftrightarrow A^3+3A-4=0\)

\(\Leftrightarrow A^3-A^2+A^2-A+4A-4=0\)

\(\Leftrightarrow A^2\left(A-1\right)+A\left(A-1\right)+4\left(A-1\right)=0\)

\(\Leftrightarrow\left(A-1\right)\left(A^2+A+4\right)=0\)

\(\Leftrightarrow A=1\)

Nguyễn Trân Ni
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 7 2021 lúc 23:54

3) Ta có: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(m^2-6\right)\)

\(=\left(2m-2\right)^2-4\left(m^2-6\right)\)

\(=4m^2-8m+4-4m^2+24\)

\(=-8m+28\)

Để phương trình có hai nghiệm phân biệt x1;x2 thì Δ>0

\(\Leftrightarrow-8m+28>0\)

\(\Leftrightarrow-8m>-28\)

hay \(m< \dfrac{7}{2}\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{1}=2m-2\\x_1x_2=m^2-6\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=16\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=16\)

\(\Leftrightarrow\left(2m-2\right)^2-2\left(m^2-6\right)-16=0\)

\(\Leftrightarrow4m^2-8m+4-2m^2+12-16=0\)

\(\Leftrightarrow2m^2-8m=0\)

\(\Leftrightarrow2m\left(m-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\left(nhận\right)\\m=4\left(loại\right)\end{matrix}\right.\)