Tìm x,y biết: x^3+y^3=4021(x^2-xy+y^2) và x-y=1
tìm 2 số x, y biết x^3 + y^3=4021(x^2-xy+y^2) và x-y=1
Tìm hai số x,y biết:
x3 + y3 = 4021( x2 - xy + y2) và x - y = 1
Help me!!!
Giải:
Theo đề ra, ta có:
\(x^3+y^3=4021\left(x^2-xy+y^2\right)\)
Mà \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(\Leftrightarrow4021\left(x^2-xy+y^2\right)=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(\Leftrightarrow x+y=4021\) (1)
Mà theo giả thiết ta có: \(x-y=1\) (2)
Từ (1) và (2) \(\Rightarrow\left\{{}\begin{matrix}x=\left(4021+1\right):2\\y=\left(4021-1\right):2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2011\\y=2010\end{matrix}\right.\)
Vậy x = 2011 và y = 2010.
Chúc bạn học tốt!
Trần Quốc Lộc, Hung nguyen, Gia Hân Ngô, Phạm Hoàng Giang, Toshiro Kiyoshi, @Aki Tsuki, @Trương Tú Nhi, ...
a)cho x2+y2=15vaf x.y=6. Tính x4+y4
b) Tìm hai số x,y biết x3+y3=4021(x2-xy+y2)và x-y=1
1.tìm các số x,y,z biết rằng 1/2x=2/3y=3/4z và x-y =15
2.a)x/2=y/3 và xy=54
b) x/5=y/3 va x^2-y^2=4 (x,y>0)
a/ Thu gọn đơn thức (12/5.x^4 y^2).(5/9 xy^3xy) đó xác định phần hệ số, phần biến và bậc của đơn thức: b/ Tính giá trị của bieur thức 2 3 A x xy y = + − tại x y = = − 2; 1 c/ Tìm đa thức M, biết 2 2 2 2 (2 3 3 7) ( 3 7) x y xy x M x y xy y − + + − = − + + d/ Cho đa thức 2 P x ax x ( ) 2 1 = − + Tìm a, biết: P(2) 7 = Câu 3. (1,5 điểm) Cho các đa thức: A(x) = x3 + 3x2 – 4x – 12 B(x) = x3 – 3x2 + 4x + 18 a. Hãy tính: A(x) + B(x) và A(x) – B(x) b. Chứng tỏ x = – 2 là nghiệm của đa thức A(x) nhưng không là nghiệm của đa thức B(x)
Câu 3:
a: A(x)=x^3+3x^2-4x-12
B(x)=x^3-3x^2+4x+18
A(x)+B(x)
=x^3+3x^2-4x-12+x^3-3x^2+4x+18
=2x^3+6
A(x)-B(x)
=x^3+3x^2-4x-12-x^3+3x^2-4x-18
=6x^2-8x-30
b: A(-2)=(-8)+3*4-4*(-2)-12
=-20+3*4+4*2=0
=>x=-2 là nghiệm của A(x)
B(-2)=(-8)-3*(-2)^2+4*(-2)+18=-10
=>x=-2 ko là nghiệm của B(x)
Bài 1: Tìm x biết : 2x.(x+3)+(2x+3).(5-x)=2 Bài 2 : Tính x³+y³ biết x-y=4 và xy=5
Bài 1:
$2x(x+3)+(2x+3)(5-x)=2$
$\Leftrightarrow 2x^2+6x+(10x-2x^2+15-3x)=2$
$\Leftrightarrow 2x^2+6x+7x-2x^2+15=2$
$\Leftrightarrow 13x+15=2$
$\Leftrightarrow 13x=2-15=-13$
$\Leftrightarrow x=-13:13=-1$
Bài 2:
$x-y=4\Rightarrow x=y+4$. Thay vào $xy=5$ thì:
$(y+4)y=5$
$\Leftrightarrow y^2+4y-5=0$
$\Leftrightarrow (y-1)(y+5)=0$
$\Leftrightarrow y=1$ hoặc $y=-5$
Nếu $y=1$ thì $x=y+4=5$. Khi đó $x^3+y^3=5^3+1^3=126$
Nếu $y=-5$ thì $x=y+4=-1$. Khi đó: $x^3+y^3=(-1)^3+(-5)^3=-126$
Cho hai số x,y(0>x>y).Biết x/y=3/2 và 1/xy=6. Tìm x, y.
Lời giải:
$\frac{x}{y}=\frac{3}{2}\Rightarrow x=\frac{3}{2}y$
$\frac{1}{xy}=6$
$\Rightarrow xy=\frac{1}{6}$
$\Rightarrow \frac{3}{2}y.y=\frac{1}{6}$
$\Rightarrow y^2=\frac{1}{9}=(\frac{1}{3})^2=(\frac{-1}{3})^2$
Vì $y<0$ nên $y=\frac{-1}{3}$
$x=\frac{3}{2}y=\frac{3}{2}.\frac{-1}{3}=\frac{-1}{2}$
Mà $\frac{-1}{2}< \frac{-1}{3}$ nên loại (do $x> y$)
Vậy không tồn tại $x,y$ thỏa mãn đề.
1.Theo tỉ lệ thức 3x-y/x+y=3/4 tìm giá trị của x/y
2.Theo x/2=y/5 biết xy=90 tìm x và y
Tìm 3 số x,y,z biết x+y=2 và xy - z2 = 1
Từ x + y = 2 => x = 2 - y thay vào xy - z2 = 1
Ta có: \(\left(2-y\right)y-z^2=1\)
<=> \(z^2+y^2-2y+1=0\)
<=> \(z ^2+\left(y-1\right)^2=0\)
<=> \(\left\{{}\begin{matrix}z=0\\y=1\end{matrix}\right.\) => x = 2 - 1 = 1
Vậy x = y = 1 và z = 0