Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Triết
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 12 2021 lúc 23:28

a: Xét (O) có

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC

hay A nằm tren đường trung trực của BC(1)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

Ninh Bích Ngọc
Xem chi tiết
Trần Hiếu
Xem chi tiết
khangvbp
Xem chi tiết
Nguyễn Đức Minh Quang
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 8 2021 lúc 0:24

a: Xét (O) có 

AB là tiếp tuyến có B là tiếp điểm

AC là tiếp tuyến có C là tiếp điểm

Do đó: AB=AC

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(1)

Ta có: AB=AC

nên A nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của CB

nguyễn thị diễm vân
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 2 2022 lúc 14:38

a: Xét ΔAMB và ΔACM có 

\(\widehat{AMB}=\widehat{ACM}\)

\(\widehat{MAB}\) chung

Do đó: ΔAMB∼ΔACM

Suy ra: AM/AC=AB/AM

hay \(AM^2=AB\cdot AC\)

b: Xét tứ giác AMON có 

\(\widehat{AMO}+\widehat{ANO}=180^0\)

Do đó: AMON là tứ giác nội tiếp(1)

Xét tứ giác AHON có 

\(\widehat{AHO}+\widehat{ANO}=180^0\)

Do đó:AHON là tứ giác nội tiếp(2)

Từ (1) và (2) suy ra A,M,O,N,H cùng thuộc một đường tròn

hay AMHN là tứ giác nội tiếp

Xích U Lan
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 3 2021 lúc 21:18

b) Xét tứ giác OMEC có

\(\widehat{OCE}\) và \(\widehat{OME}\) là hai góc đối

\(\widehat{OCE}+\widehat{OME}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: OMEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Nguyễn Lý
Xem chi tiết
Nguyễn Duy Khang
26 tháng 12 2020 lúc 13:14

Bạn tự vẽ hình nhé !!!

Ta có: 

\(\left\{{}\begin{matrix}OB=OC\left(=R\right)\\AB=AC\left(tínhchất2tiếptuyếncắtnhau\right)\end{matrix}\right.\)

=> AO là đường trung trực của BC

\(\Rightarrow AO\perp BC\left(1\right)\)

\(\Delta BCD\) nội tiếp (O) đường kính BD

\(\Rightarrow\Delta BCD\) vuông tại C

\(\Rightarrow CD\perp BC\left(2\right)\)

Từ (1) và (2) \(\Rightarrow AO//CD\)

RINBUONGTHA
Xem chi tiết

Xét (O) có

AM,AN là các tiếp tuyến

Do đó: AM=AN

=>A nằm trên đường trung trực của MN(1)

Ta có: OM=ON

=>O nằm trên đường trung trực của MN(2)

Từ (1) và (2) suy ra OA là đường trung trực của MN

=>OA\(\perp\)MN tại I

Xét ΔOHA vuông tại H và ΔOIC vuông tại I có

\(\widehat{HOA}\) chung

Do đó: ΔOHA~ΔOIC

=>\(\dfrac{OH}{OI}=\dfrac{OA}{OC}\)

=>\(OH\cdot OC=OA\cdot OI\)

mà \(OA\cdot OI=OM^2=OB^2\)

nên \(OB^2=OH\cdot OC\)

=>\(\dfrac{OB}{OH}=\dfrac{OC}{OB}\)

Xét ΔOBC và ΔOHB có

\(\dfrac{OB}{OH}=\dfrac{OC}{OB}\)

\(\widehat{BOC}\) chung

Do đó: ΔOBC~ΔOHB

=>\(\widehat{OBC}=\widehat{OHB}\)

mà \(\widehat{OHB}=90^0\)

nên \(\widehat{OBC}=90^0\)

=>CB là tiếp tuyến của (O)

Nguyễn Phương
Xem chi tiết
Nguyễn Anh Quân
8 tháng 11 2017 lúc 15:51

Bạn vẽ hình đi mình làm cho

Nguyễn Phương
8 tháng 11 2017 lúc 16:15

mình cần bài này gấp cam on bạn nhiều lắm mình vẽ tượng trung thôi nhưng kiểu như v