Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mạc Thiên Tử
Xem chi tiết
nguyen duc khoa
Xem chi tiết
Nguyễn Mary
Xem chi tiết
dbrby
Xem chi tiết
Akai Haruma
31 tháng 10 2018 lúc 21:12

Lời giải:

\((3a+2b)(3a+2c)=16bc\)

\(\Leftrightarrow 9a^2+6a(b+c)=12bc\)

Theo BĐT Cô-si \(4bc\leq (b+c)^2\Rightarrow 9a^2+6a(b+c)\leq 3(b+c)^2\)

\(\Rightarrow 3a^2+2a(b+c)\leq (b+c)^2\)

\(\Leftrightarrow (b+c)^2-3a^2-2a(b+c)\geq 0\)

\(\Leftrightarrow (b+c)^2-9a^2-2a(b+c)+6a^2\geq 0\)

\(\Leftrightarrow (b+c-3a)(b+c+3a)-2a(b+c-3a)\geq 0\)

\(\Leftrightarrow (b+c-3a)(b+c+a)\geq 0\)

Vì $a+b+c>0$ nên \(b+c-3a\geq 0\Rightarrow b+c\geq 3a\) (đpcm)

b) Áp dụng BĐT Cô-si và kết quả phần a:

\(\frac{a}{b+c}+\frac{b+c}{a}=\frac{a}{b+c}+\frac{b+c}{9a}+\frac{8(b+c)}{9a}\)

\(\geq 2\sqrt{\frac{a}{b+c}.\frac{b+c}{9a}}+\frac{8(b+c)}{9a}=\frac{2}{3}+\frac{8(b+c)}{9a}\geq \frac{2}{3}+\frac{8.3a}{9a}=\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)

Ta có đpcm.

꧁Gιʏuu ~ Cнᴀɴ꧂
Xem chi tiết
missing you =
11 tháng 8 2021 lúc 12:49

\(P=\dfrac{4a^2}{4b+2c}+\dfrac{4b^2}{4a+2c}+\dfrac{c^2}{4a+4b}\ge\dfrac{\left(2a+2b+c\right)^2}{8a+8b+4c}\)

\(=\dfrac{\left(2a+2b+c\right)^2}{4\left(2a+2b+c\right)}=\dfrac{1}{4}\left(2a+2b+c\right)\)

Vân Nguyễn Thị
Xem chi tiết
Tô Hà Thu
30 tháng 10 2021 lúc 21:08

\(=\dfrac{11a+17b}{11c-17d}=\dfrac{3a-4b}{3c-4d}\)

\(\Rightarrow...\)

OH-YEAH^^
30 tháng 10 2021 lúc 21:44

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

\(\Rightarrow\dfrac{11a+17b}{3a-4b}=\dfrac{11bk+17b}{3bk-4b}=\dfrac{b\left(11k+17\right)}{b\left(3k-4\right)}=\dfrac{11k+17}{3k-4}\left(1\right)\)

\(\Rightarrow\dfrac{11c+17d}{3c-4d}=\dfrac{11dk+17d}{3dk-4d}=\dfrac{d\left(11k+17\right)}{d\left(3k-4\right)}=\dfrac{11k+17}{3k-4}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\dfrac{11a+17b}{3a-4b}=\dfrac{11c+17d}{3c-4d}\)

Nguyễn Văn Phong
Xem chi tiết
Nguyễn Văn Phong
28 tháng 5 2017 lúc 23:13

cần 1 lời giải đáp cụ thể

Neet
28 tháng 5 2017 lúc 23:39

trên face có đấy,lên đó mà tìm

Trần Thiên Kim
Xem chi tiết
soyeon_Tiểubàng giải
6 tháng 4 2017 lúc 21:21

Áp dụng bđt Cauchy Schwarz dạng Engel ta có:

\(\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\ge\left(a+b+c\right).\dfrac{\left(1+1+1\right)^2}{2\left(a+b+c\right)}\)

\(\ge\dfrac{9}{2}\left(đpcm\right)\)

Thu Phương
Xem chi tiết
Đạt Trần Tiến
15 tháng 12 2017 lúc 22:08

Áp dụng BĐT Cauchy dạng engel ta có:

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{(a+b+c)^2}{a+b+c}=a+b+c(đpcm) \)

Lê Bùi
18 tháng 12 2017 lúc 9:30

theo bđt cauchy ta có

\(\left\{{}\begin{matrix}\dfrac{a^2}{b}+b\ge2a\\\dfrac{b^2}{c}+c\ge2b\\\dfrac{c^2}{a}+a\ge2c\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}+a+b+c\ge2a+2b+2c\)

\(\Leftrightarrow\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c\)

\(\Rightarrow dpcm\)