Tính tổng sau:
A=1+3+32+...+32022+32023.
Cho:A=1+3+32+33+34+...+32022
B=32023:2
Tính B-A
A = 1 + 3 + 32 + 33 + 34 + ... + 32022
3A = 3 + 32 + 33 + ... + 34 + ... + 32022 + 32023
3A - A = (3 + 32 + 33 + ... + 34 + 32022 + 32023) - (1 + 3+...+ 32022)
2A = 3 + 32 + 33 + 34 + ... + 32022 + 32023 - 1 - 3 - ... - 32022
2A = (3 - 3) + (32 - 32) + (34 - 34) + (32022 - 32022) + (32023 - 1)
2A = 32023 - 1
A = \(\dfrac{3^{2023}-1}{2}\)
A = \(\dfrac{3^{2023}}{2}\) - \(\dfrac{1}{2}\)
B - A = \(\dfrac{3^{2023}}{2}\) - (\(\dfrac{3^{2023}}{2}\) - \(\dfrac{1}{2}\))
B - A = \(\dfrac{3^{2023}}{2}\) - \(\dfrac{3^{2023}}{2}\) + \(\dfrac{1}{2}\)
B - A = \(\dfrac{1}{2}\)
Tính S=32024-32023+32022-32021+...+32-3
\(S=3^{2024}-3^{2023}+3^{2022}-3^{2021}+...+3^2-3\)
\(3S=3^{2025}-3^{2024}+3^{2023}-3^{2022}+...+3^3-3^2\)
\(3S+S=3^{2025}-3^{2024}+3^{2023}-3^{2022}+...+3^3-3^2+3^{2024}-3^{2023}+3^{2022}-3^{2021}+...+3^2-3\)\(4S=3^{2025}-3\)
\(S=\dfrac{3^{2025}-3}{4}\)
S = 32024 - 32023 + 32022 - 32021 +... + 32 - 3
3.S = 32025 - 32024 + 32022 -32021 + ....+ 33 - 32
3S + S = 32025 - 32024 + 32022 - 32021 +...+33 - 32+(32024-32023+...-3)
4S = 32025 - 32024 + 32022 - 32021+...+33-32 + 32024-32023+...-3
4S = 32025 - (32024 - 32024) -...-(32 - 32) - 3
4S = 32025 - 3
S = \(\dfrac{3^{2025}-3}{4}\)
so sánh A và B với A = 1 + 3 + 32 + ... +32022 + 32023 và B = 32024 - 1
A = 1 + 3 + 3² + ... + 3²⁰²³
⇒ 3A = 3 + 3² + 3³ + ... + 3²⁰²³ + 3²⁰²⁴
⇒ 2A = 3A - A
= (3 + 3² + 3³ + ... + 3²⁰²³ + 3²⁰²⁴) - (1 + 3 + 3² + ... + 3²⁰²³)
= 3²⁰²⁴ - 1
⇒ A = (3²⁰²⁴ - 1) : 2
⇒ A < B
A=1+3+32+33+34+........+32022+32023
3A=3+32+33+............+32023+32024
3A-A=(3+32+33+..........+32023+32024
A=1+3+32+...+32022+32023
3A=3+32+33+...+32023+32024
3A-A=(3+32+33+...+32023+32024)-(1+3+32+...+32022+32023)
2A=32024-1
A=(32024-1):2
ta thấy 32024-1 lớn hơn (32024-1):2
vậy B lớn A
anh tai sadboy
a) Cho A=1+3+32+33 +...+32022.Tính giá trị của biểu thức 2A - 32023
b) Tìm các số nguyên x sao cho x + 10 chia hết cho x - 1 .
Thu gọn C, biết :
C = 32023 - 32022 + 32021 - 32020 + 32019 - ... - 32 + 3.
Giúp mình với!
bài 1:cho S = 1+2+22+23+...+22023
a. tính tổng
b.cho B = 22024 so sánh S và B
bài 2: tính tổng H=3+32+33+...+32022
Bài 1
a) S = 1 + 2 + 2² + 2³ + ... + 2²⁰²³
2S = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²⁴
S = 2S - S = (2 + 2² + 2³ + ... + 2²⁰²⁴) - (1 + 2 + 2² + 2³)
= 2²⁰²⁴ - 1
b) B = 2²⁰²⁴
B - 1 = 2²⁰²⁴ - 1 = S
B = S + 1
Vậy B > S
a,
\(S=1+2+2^2+...+2^{2023}\)
\(2S=2+2^2+2^3+...+2^{2024}\)
\(\Rightarrow S=2^{2024}-1\)
b.
Do \(2^{2024}-1< 2^{2024}\)
\(\Rightarrow S< B\)
2.
\(H=3+3^2+...+3^{2022}\)
\(\Rightarrow3H=3^2+3^3+...+3^{2023}\)
\(\Rightarrow3H-H=3^{2023}-3\)
\(\Rightarrow2H=3^{2023}-3\)
\(\Rightarrow H=\dfrac{3^{2023}-3}{2}\)
Bài 2
H = 3 + 3² + 3³ + ... + 3²⁰²²
⇒ 3H = 3² + 3³ + 3⁴ + ... + 3²⁰²³
⇒2H = 3H - H
= (3² + 3³ + 3⁴ + ... + 3²⁰²³) - (3 + 3² + 3³ + ... + 3²⁰²²)
= 3²⁰²³ - 3
⇒ H = (3²⁰²³ - 3) : 2
cho tổng a=1/3+2/32+3/33+4/34+.....+2022/32022.So sánh với 3/4
Cho A = 1 + 3 + 32 + 33 +.......+ 32021 , B = 32022 : 2. Tính: B - A
Lời giải:
$A=1+3+3^2+3^3+...+3^{2021}$
$3A=3+3^2+3^3+...+3^{2022}$
$\Rightarrow 3A-A=(3+3^2+3^3+...+3^{2022}) - (1+3+3^2+3^3+...+3^{2021})$
$\Rightarrow 2A=3^{2022}-1$
$\Rightarrow A=\frac{3^{2022}-1}{2}$
$B-A=\frac{3^{2022}}{2}-\frac{3^{2022}-1}{2}=\frac{1}{2}$
Cho B= 1+3+32+….+32021 C= 32022 : 2 Tính C - B ai giúp mình vs