Phân tích đa thức thành nhân tử:
(2x+5)2-(x-9)2
Phân tích đa thức thành nhân tử : x^2 - 9 - (x-3) (5-2x)
\(=\left(x-3\right)\left(x+3\right)+\left(x-3\right)\left(2x-5\right)\\ =\left(x-3\right)\left(x+3+2x-5\right)\\ =\left(x-3\right)\left(3x-2\right)\)
\(x^2-9-\left(x-3\right)\left(5-2x\right)=\left(x-3\right)\left(x+3\right)-\left(x-3\right)\left(5-2x\right)=\left(x-3\right)\left(x+3-5+2x\right)=\left(x-3\right)\left(3x-2\right)\)
\(x^2-9-\left(x-3\right)\left(5-2x\right)\\ =\left(x^2-9\right)-\left(x-3\right)\left(5-2x\right)\\ =\left(x-3\right)\left(x+3\right)-\left(x-3\right)\left(5-2x\right)\\ =\left(x-3\right)\left(x+3-5+2x\right)\\ =\left(x-3\right)\left(3x-2\right)\)
Các bạn ơi giải hộ mình vs mình cần gấp:
phân tích các đa thức sau thành nhân tử:
X^3-2x^2-x+2
X^2+6x-y^2+9
Phân tích đa thức 2x^3y-2xy^3-4xy^2-2xy thành nhân tử
a) x3-2x2-x+2
=x(x2-1)+2(-x2+1)
=x(x2-1)-2(x2-1)
=(x2-1)(x-2)
b)
x2+6x-y2+9
=x2+6x+9-y2
=(x+3)2-y2
=(x+3-y)(x+3+y)
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ 9(x^2-2x-3)^4-37x^2(x^2-2x-3)^2+4x^2
Phân tích đa thức thành nhân tử:
a) (x+1)(x+2)(x+3)(x+4)-15
b) ((2x+5)^2)-(x-9)^2
a) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-15\)
\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)-15\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-15\)(1)
Đặt \(x^2+5x+4=t\)
\(\Rightarrow\left(1\right)=t\left(t+2\right)-15=t^2+2t+1-16\)
\(=\left(t+1\right)^2-4^2=\left(t+5\right)\left(t-3\right)\)
\(=\left(x^2+5x+9\right)\left(x^2+5x+1\right)\)
b) \(\left(2x+5\right)^2-\left(x-9\right)^2\)
\(=\left(2x+5+x-9\right)\left(2x+5-x+9\right)\)
\(=\left(3x-4\right)\left(x+14\right)\)
a) (x+1)(x+2)(x+3)(x+4) -15
= (x+1)(x+4)(x+2)(x+3)-15
=(x2+5x+4)(x2+5x+6)-15 (*)
đặt x2+5x+5 = k ( k khác 0 )
thì (*) = (k-1)(k+1)-15
=k2-1-15=k2-16
= (k+4)(k-4)
=(x2+5x+9)(x2+5x+1)
b) (2x+5)2-(x-9)2
=(2x+5+x-9)(2x+5-x+9)
=(3x-4)(x+14)
Phân tích đa thức thành nhân tử
1) (x^2-25)^2-(x-5)^2
2) ( 4x^2-25)^2 - 9(2x-5)^2
1/\(\left(x^2-25\right)^2-\left(x-5\right)^2\)
<=>\(\left[\left(x-5\right)\left(x+5\right)\right]^2-\left(x-5\right)^2\)
<=>\(\left(x-5\right)^2\left[\left(x+5\right)^2-1\right]\)
2/\(\left(4x^2-25\right)^2-9\left(2x-5\right)^2\)
<=>\(\left[\left(2x-5\right)\left(2x+5\right)\right]^2-9\left(2x-5\right)^2\)
<=>\(\left(2x-5\right)\left[\left(2x+5\right)^2-9\right]\)
#hoctot<3#
Phân tích đa thức thành nhân tử bằng phương pháp hằng đẳng thức:
9(x-3y)^2-25(2x+y)^2
\(9\left(x-3y\right)^2-25\left(2x+y\right)^2\)
\(=\left[3\left(x-3y\right)\right]^2-\left[5\left(2x+y\right)\right]^2\)
\(=\left(3x-9y\right)^2-\left(10x+5y\right)^2\)
\(=\left[3x-9y+10x+5y\right]\left[3x-9y-\left(10x+5y\right)\right]\)
\(=\left(13x-4y\right)\left(-7x-14y\right)\)
\(=-7\left(x+2y\right)\left(13x-4y\right)\)
9(x - 3y)² - 25(2x + y)²
= 3².(x - 3y)² - 5².(2x + y)²
= (3x - 9y)² - (10x + 5y)²
= (3x - 9y - 10x - 5y)(3x - 9y + 10x + 5y)
= (-7x - 14y)(13x - 4y)
= -7(x + 2y)(13x - 4y)
Phân tích đa thức thành nhân tử
\(x^6+2x^5+x^4-2x^3-2x^2+1\)
\(x^6+2x^5+x^4-2x^3-2x^2+1=\left(x^3+x^2-1\right)^2\)
Phân tích đa thức thành nhân tử:
a)xy+3x-7y-21
b)2xy-15-6x-5y
c)2x^2y+2xy^2-2x-2y
Phân tích các đa thức sau thành nhân tử:
x(x+3)-5x(x-5)-5(x+3)
a) xy+3x-7y-21
=x(y+3)-7(x+3)
=(x-7)(y+3)
b)2xy-15-6x-5y
=2x(y-3)-5(-3+y)
=(2x-5)(y-3)
c)2x^2y+2xy^2-2x-2y
=2x(xy-1)+2y(xy-1)
=(2x+2y)(xy-1)
x(x+3)-5x(x-5)-5(x+3)
=(x-5)(x+3)-5x(x-5)
=(x-5)(x+3-5x)
Câu cuối mình bị nhầm dòng cuối phải là (x-5)(x+3+x-5)=(x-5)(2x-2)nha bạn
a) xy+3x-7y-21=(xy+3x)-(7y+21)= x(y+3)-7(y+3)=(y+3)(x-7)
b)2xy-15-6x+5y=(2xy-6x)+(5y-15)=2x(y-3)+5(y-3)=(y-3)(2x+5)
c)2x^2y+2xy^2-2x-2y=2xy(x+y)-2(x+y)=2(x+y)(xy-1)
d) x(x+3)-5x(x-5)-5(x+3)=[x(x+3)-5(x+3)]-5x(x-5)=(x+3)(x-5)-5x(x-5)=(x-5)(x+3-5x)=(x-5)(3-4x)
Đa thức x^3 - 2x^2 + x - xy^2 được phân tích thành nhân tử
Đa thức x^3 + 3x^2y +3xy^2 + y^3 được phân tích thành nhân tử là
Đa thức 4x(2y-z)+7y(2y-z) được phân tích thành nhân tử là:
Đa thức x^2+4x+4 được phân tích thành nhân tử là
Tìm x biết x(x-2)-x+2
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)