Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Quỳnh Mai
Xem chi tiết
Nguyễn Huy Tú
19 tháng 8 2017 lúc 20:04

a, Ta có: \(4\equiv1\left(mod3\right)\)

\(\Rightarrow4^{2018}\equiv1\left(mod3\right)\)

\(\Rightarrow4^{2018}-1⋮3\)

b, Ta có: \(5\equiv1\left(mod4\right)\)

\(\Rightarrow5^{2019}\equiv1\left(mod4\right)\)

\(\Rightarrow5^{2019}-1⋮4\)

c, \(4\equiv-1\left(mod5\right)\)

\(\Rightarrow4^{2019}\equiv-1\left(mod5\right)\)

\(\Rightarrow4^{2019}+1⋮5\)

d, \(5\equiv-1\left(mod6\right)\)

\(\Rightarrow5^{2017}\equiv-1\left(mod6\right)\)

\(\Rightarrow5^{2017}+1⋮6\)

Phương Trâm
19 tháng 8 2017 lúc 20:05

1. Vì \(4\) chia \(3\)\(1\)

\(\Rightarrow4^{2018}\) chia \(3\)\(1^{2018}=1.\)

\(\Rightarrow4^{2018}-1\) chia hết cho \(3.\)

Tâm Lý
15 tháng 4 2023 lúc 6:42

a, Ta có: 4≡1(mod3)4≡1(���3)

⇒42018≡1(mod3)⇒42018≡1(���3)

⇒42018−1⋮3⇒42018−1⋮3

b, Ta có: 5≡1(mod4)5≡1(���4)

⇒52019≡1(mod4)⇒52019≡1(���4)

⇒52019−1⋮4⇒52019−1⋮4

c, 4≡−1(mod5)4≡−1(���5)

⇒42019≡−1(mod5)⇒42019≡−1(���5)

⇒42019+1⋮5⇒42019+1⋮5

d, 5≡−1(mod6)5≡−1(���6)

⇒52017≡−1(mod6)⇒52017≡−1(���6)

⇒52017+1⋮6

Giang phạm bình
Xem chi tiết
Nguyễn Phú Quý
20 tháng 10 2017 lúc 20:39

toán này có trong thi HSG lớp 9 bạn nhé:

nhóm nhân tử làm xuất hiện cái số chia hết cho số cần chia VD như:2a+4b=2(a+2b) mà 2 nhân với bất cứa 1 số nào cũng chia hết cho 2 nên BT chia hết cho 2

còn phần dưới hì phân tích 2 số đâu chia hết cho 1 số chẵn mà cộng thếm 1 thì chia hết cho số lẻ nên BT sai

Trần Nguyễn Minh Ngọc
Xem chi tiết
Trần Linh Chi
15 tháng 1 2015 lúc 20:23

Ta có: 3x-4y 

          = x-6y+6y-+4y

          = 3.(x+2y)-10y

Mà: 10 chia hết cho 5 => 10y chia hết cho 5

       3 không chia hết cho 5 => 9x+2y0 chia hết cho 5 (1)

Ta có: x+2y

          =x+2y+5x-10y-5x+10y

          = 6x-8y-5.(x+2y)

Mà: 5 chia hết cho 5 => 5(x+2y) chia hết cho 5

      2 không chia hết cho 5 => (3x-4y) chia hết cho 5 (2)

Từ (1) và (2) => x+2y <=> 3x -4y

Vậy ; x+2y <=> 3x-4y

 

Nguyễn Minh
5 tháng 10 2015 lúc 20:58

ban gioi wa.cam on

 

Lê Quý Vượng
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 10 2021 lúc 23:59

Bài 5: 

b: Ta có: \(n+6⋮n+2\)

\(\Leftrightarrow n+2\in\left\{2;4\right\}\)

hay \(n\in\left\{0;2\right\}\)

c: Ta có: \(3n+1⋮n-2\)

\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)

hay \(n\in\left\{1;3;9\right\}\)

Nguyễn Trần Lam Trúc
Xem chi tiết
Trên con đường thành côn...
7 tháng 8 2021 lúc 20:33

undefined

Nguyễn Lê Phước Thịnh
7 tháng 8 2021 lúc 23:05

Bài 1: 

b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)

\(=4n^2-9-4n^2+36n\)

\(=36n-9⋮9\)

Nguyễn Quỳnh Mai
Xem chi tiết
Super Cold Boy
18 tháng 8 2017 lúc 20:49

a)Vì 4 chia 3 dư 1

=>4^2018 chia 3 dư 1^2018=1

=>462018-1 chia hết cho 3

b)Ta có:
5^2019=(5^2)^1009*5

            =25^1009*5

             =...25*5

            =...25

=>5^2019-1=...24

Vì 2 cs tận cùng của ...24 là 24 chia hết cho 4

=>5^2019-1 chia hết cho 4

Vậy......

Nguyễn Quốc Gia Huy
18 tháng 8 2017 lúc 21:12

Ta có:

\(4^{2018}-1=4^{2018}-4^{2017}+4^{2017}-4^{2016}+4^{2016}-4^{2015}+...+4-1\)

\(=4^{2017}\left(4-1\right)+4^{2016}\left(4-1\right)+4^{2015}\left(4-1\right)+...+1.\left(4-1\right)\)

\(=\left(4-1\right)\left(4^{2017}+4^{2016}+4^{2015}+...+1\right)=3\left(4^{2017}+4^{2016}+4^{2015}+...+1\right)⋮3\)

Vậy \(4^{2018}-1⋮3\)

Chứng minh tương tự \(5^{2019}-1⋮4\)

Nguyễn Quỳnh Thơ
20 tháng 8 2017 lúc 8:45

Mai ơi hay nhỉ, lên đây hỏi bài

Xem chi tiết
Phong Thần
14 tháng 1 2021 lúc 18:10

hỏi chút là 74n-1 hay là 74n-1 vậy 

Phong Thần
14 tháng 1 2021 lúc 22:22

làm đại, ko bt đúng ko nữa

 

74n-1=\(\dfrac{1}{7}\).74n=14n ko chia hết cho 5

 

 

Hoàng Huyền Thu
Xem chi tiết
Lê Nguyễn Bảo Trân
29 tháng 11 2015 lúc 19:21

1 ) a + 5b chia hết cho 7

=> 10 ( a + 5b ) chia hết cho 7

=> 10a + 50b chia hết cho 7

( 10a + b ) + 49b chia hết cho 7

Mà : 49b chia hết cho 7

=> 10a + b chia hết cho 7

Khánh Linh
Xem chi tiết
Khánh Linh
10 tháng 10 2021 lúc 19:15

giúp mình với mình chuẩn bị phải nộp bài rồi T~T 

Nguyễn Lê Phước Thịnh
10 tháng 10 2021 lúc 23:04

\(B=2+2^2+2^3+...+2^{60}\)

\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\cdot\left(2+...+2^{58}\right)⋮7\)