Cho tam giác ABC cân tại A. Biết B = C = 65 độ. Vẽ tia Am // BC. Tia An là tia đối của tia Ab và tia Am nằm giữa hai tia An và Ac. a) Tính góc BAm b) Chứng minh Am là tia phân giác của góc NAC
a: Am//BC
=>góc mAB+góc ABC=180 độ
=>góc mAB=115 độ
b: góc nAm=góc ABC
góc mAC=góc ACB
=>góc nAm=góc mAC
=>Am là phân giác của góc nAC
Cho tam giác ABC có B = 65 độ , C = 65 độ . Vẽ tia Am song song với BC , tia An là tia đối của AB và Am nằm giữa 2 tia An , AC
a. Tính số đo góc BAC
b. Tính số đo góc BAm
c. Chứng minh Am là tia phân giác của góc nAC
a) Xét \(\Delta ABC\) có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) (Định lý tổng ba góc trong một tam giác)
⇔ \(\widehat{A}+65^o+65^o=180^o\)
⇔\(\widehat{A}+130^o=180^o\)
⇔\(\widehat{A}=180^o-130^{o^{ }}\)
⇔\(\widehat{A}=50^o\)
Hay \(\widehat{BAC}=50^o\)
b) Vì \(Am\) // BC (gt)
⇔\(\widehat{CAm}=\widehat{C}\) (vì 2 góc so le trong)
mà \(\widehat{C}=65^o\) (gt)
⇔\(\widehat{CAm}=65^o\)
Vì AC nằm giữa tia AB và Am
⇔\(\widehat{BAC}+\widehat{CAm}=\widehat{BAm}\)
⇔\(50^o+65^o=\widehat{BAm}\)
⇔\(\widehat{BAm}=115^o\)
Ta có \(\widehat{BAm}+\widehat{nAm}=180^o\) (vì 2 góc kề bù)
⇔ \(115^o+\widehat{nAm}=180^o\)
⇔\(\widehat{nAm}=180^o-115^o\)
⇔\(\widehat{nAm}=65^o\)
mà \(\widehat{CAm}=65^o\) (cmt)
⇔\(\widehat{nAm}=\widehat{CAm}=65^o\)
⇔Am là tia phân giác của \(\widehat{nAC}\) (đpcm)
1.Cho tam giác ABC vuông tại A. Các tia phân giác của góc B và góc C cắt nhau tại I. Gọi D, E, F là hình chiếu của I xuống AB, AC, BC.
a) Chứng minh rằng AD=AE
b) Tính độ dài các đoạn thẳng AD, AE nếu biết AB = 8cm, AC = 15cm
c) Trong trường hợp tam giác ABC cân tại A, hãy chứng minh rằng tam giác DEF là tam giác cân
2.Cho tam giác ABC có AB<AC. Trên tia đối của tia BC lấy điểm M sao cho BM=BA, trên tia đối của tia CB lấy điểm N sao cho CN=CA
a) Hãy so sánh các góc AMB và ANC
b) Hãy so sánh độ dài các đoạn thẳng AM và AN
c) Gọi H là trung điểm của AM, K là trung điểm của AN. Hai đường thẳng BH và CK cắt nhau tại I. Chứng minh I là trực tâm của tam giác AMN
trên 1 nửa mặt phẳng chứa bờ có tia Ab , vẽ hai tia Am và An sao cho bAm= 50 độ , bAn= 85 độ a) Am có nằm giữa hai tia An và Ab k ? Vì sao ? b) Gọi tia Az là tia đối của Ab .tính góc mAz
a) Vỉ \(\widehat{bAm}< \widehat{bAn}\left(50^o< 85^o\right)\)
=> Tia Am nằm giữa 2 tia Ab và An.
b) Vì Az là tia đối của Ab.
=> \(\widehat{bAm}+\widehat{mAz}=180^o\\ \Leftrightarrow50^o+\widehat{mAz}=180^o\\ \rightarrow\widehat{mAz}=180^o-50^o=130^o\)
Cho tam giác ABC góc B = 65 ; góc C = 65 . Kẻ tia Ax là tia đối của tia AB. Vẽ tia Ay song song với BC và tia Ay nằm giữa hai tia Ax, AC. a) Tính góc BAC b) Tính góc Bay c) Chứng minh tia Ay là tia phân giác của góc xAC
Cho tam giác ABC vuông tại A với AB= 3cm, AC= 4cm
a) Tính BC
b) Trên tia đối tia AB lấy M sao cho AM= AC. Trên tia đối tia AC lấy N sao cho AN=AB. Chứng minh BC=MN và NB//MC
c) Gọi I là trung điểm MC. Chứng minh rằng tam giác BIN cân
Ap dụng định lý Pytago vào tam giác vuông \(ABC\)ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow\)\(BC^2=3^2+4^2=25\)
\(\Leftrightarrow\)\(BC=\sqrt{25}=5\)
Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AB, trên tia đối của tia AC lấy điểm E sao cho AE = AC. Gọi M là điểm nằm giữa B và C. Tia MA cắt DE tại N. Chứng minh AM = AN.
Xét \(\Delta ABC\) và \(\Delta ADE\) có:
AB = AD (gt)
\(\widehat{DAE}=\widehat{BAC}\) (2 góc đối đỉnh)
AC = AE (gt)
\(\Rightarrow\Delta ABC=\Delta ADE\left(c.g.c\right)\)
\(\Rightarrow\widehat{B}=\widehat{D}\) (2 góc tương ứng)
Xét \(\Delta ABM\) và \(\Delta ADN\) có:
\(\widehat{B}=\widehat{D}\) (cmt)
AB = AD (gt)
\(\widehat{BAM}=\widehat{DAN}\) (2 góc đối đỉnh)
\(\Rightarrow\Delta ABM=\Delta ADN\left(g.c.g\right)\)
\(\Rightarrow AM=AN\) (2 cạnh tương ứng) (đpcm)
Cho tam giác ABC cân tại A.vẽ đường cao AH a) Cho bt AB=10cm , BH= 6cm. Tính độ dài đoạn Ah b) Trên tia đối của tia BC lấy điểm M, trên tia đối của CB lấy điểm N sao cho BM=CN. CM tam giác AMN là tam giác cân c) Từ B vẽ BK vuông góc với AM( K thuộc Am ). từ C vẽ CE vuông góc với AN( E thuộc AN). CM BK=CE
Cho tam giác ABC có góc A nhọn, vẽ tia Ax vuông góc với AB ( tia AC nằm giữa 2 tia AB và Ax) và trên đó lấy điểm E sao cho AE = AB. Vẽ tia Ay vuông góc với AC ( tia AB nằm giữa 2 tia Ay và AC) và trên đó lấy điểm F sao cho AF = AC.
a) CM: BF = CE
b) Gọi M, N lần lượt là trung điểm của các đoạn thẳng BF, CE. Kẻ AM, AN. CMR: AM vuông góc với AN