Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vương Hy
Xem chi tiết
Vũ Vũ
Xem chi tiết
miki
Xem chi tiết
Nguyen hoan
Xem chi tiết
woodiesnutz
27 tháng 6 2023 lúc 0:10

Đặt A=1/3+2/3^2+...+100/3^100
=>3A=1+2/3+...+100/2^99
=>3A-A=1+(2/3-1/3)+(3/32-2/32)+...(100/299-99/2^99)-100/3100

=>2A=1+1/3+1/3+1/32+...+1/399-100/3100

Ta lại đặt tiếp B=1/3+...+1/399

tiếp tục làm 3B=1+...+1/398

=>3B-B=1+...+1/398-1/3+...+1/399=1-1/3^99

=>B=(1-1/3^99)/2 (đến đây viết mũ là ^ vì lười)

đến đây ta có 2A=1+(1-1/3^99)/2 -100/3^100

=(3^100-100)/3^100 +(1-1/3^99)/2

quy đồng lên nó thành

2A=2x3^100-200/3^100x2 +(3^99-1)/3^99x2

2A=(2x3^100-200+3^100-3)/3^100x2

     =(3^101-203)/3^100x2

     ta c/m 2a<3/2 là ok

*nhân chéo lên =>2(3^101-203)<3^101x2

đồng nghĩa với 2x3^101 -406<3^101x2 (điều này luôn đúng)

=>bài toán đc chứng minh

 

 

 

 

Vũ Thị Hạnh Nga
Xem chi tiết
thám tử
15 tháng 10 2017 lúc 20:44

\(\left(x-1\right)^5=-32\)

\(\Leftrightarrow\left(x-1\right)^5=\left(-2\right)^5\)

\(\Rightarrow x-1=-2\)

\(\Rightarrow x=-2+1\)

\(\Rightarrow x=-1\)

Jong Mi Hong Ko
15 tháng 10 2017 lúc 20:46

(x-1)5= -32

=>(x-1)5=(-2)5

=> x-1 = -2

=> x = -2 +1

=> x = -1.

Ngọc Minh
15 tháng 10 2017 lúc 20:43

(x-1)^5= -32

(x-1)^5= -1^5

x-1 = -1

x= -1+1

x = 0

Ngjia Tran
Xem chi tiết
Đinh Đức Hùng
2 tháng 10 2017 lúc 20:41

Biến đổi A ta được :

\(A=x\left(x+11\right)\left(x+3\right)\left(x+8\right)+144\)

\(=\left(x^2+11x\right)\left(x^2+11x+24\right)+144\)

\(=\left(x^2+11x\right)^2+24\left(x^2+11x\right)+144\)

\(=\left(x^2+11x\right)^2+2.12.\left(x^2+11x\right)+12^2\)

\(=\left(x^2+11x+12\right)^2\) là một số chính phương \(\forall x\in Z\)

Vậy A là một số chính phương (đpcm)

Ngjia Tran
2 tháng 10 2017 lúc 20:49

Xin cảm ơn ạ.

Vũ Nguyễn Hiếu Thảo
2 tháng 10 2017 lúc 20:51

\(A=x\left(x+3\right)\left(x+8\right)\left(x+11\right)+144\)

\(=x\left(x+11\right)\left(x+3\right)\left(x+8\right)+144\)

\(=\left(x^2+11\right)\left(x^2+11+24\right)+144\)

Đặt \(x^2+11=y\Rightarrow x^2+11+24=y+24\)

\(A=y\left(y+24\right)+144\)

\(=y^2+24y+144\)

\(=y^2+2.12y+144\)

=\(\left(y+12\right)^2\)

Có \(A=\left(y+12\right)^2\) là bình phương của 1 số => A là số chính phương

Thu Đào
Xem chi tiết
Nguyễn Đức Trí
8 tháng 8 2023 lúc 14:14

 \(10^{10}\) không chia hết cho 9; \(10^9\) không chia hết cho 3, bạn xem lại đề

Trịnh Thành Long
8 tháng 8 2023 lúc 14:16

Bạn xem lại đề nha nhìn là biết sai rồi

Nguyễn Đức Trí
8 tháng 8 2023 lúc 14:17

Câu C cũng xem lại đề

 

Thu Đào
Xem chi tiết
Nguyễn thành Đạt
3 tháng 8 2023 lúc 19:42

\(a)\) Công thức tính số hạng của một dãy số là : (Số cuối-số đầu ) chia khoảng cách rồi cộng thêm 1 .

Do đó : Số hạng của dãy số A là : \(\dfrac{\left(2n+1\right)-1}{2}+1=n+1\)

            Số hạng của dãy số B là : \(\dfrac{2n-2}{2}+1=n-1+1=n\)

\(b)\) Ta có : Số hạng của dãy số A là : \(n+1\)

   Do đó : tổng của A là : \(\dfrac{\left(2n+1+1\right).\left(n+1\right)}{2}=\dfrac{2\left(n+1\right)\left(n+1\right)}{2}\)

\(=\left(n+1\right)^2\) 

Vì n thuộc N nên tổng của A là : một số chính phương . 

\(c)\) Ta có : Số hạng của dãy số B là : n

     Do đó : Tổng của dãy số B là : \(\dfrac{n.\left(2n+2\right)}{2}=\dfrac{2.n.\left(n+1\right)}{2}\)

\(=n.\left(n+1\right)\) 

Ta thấy : n(n+1) là tích của 2 số tự nhiên liên tiếp nên để B là số chính phương thì khi và chỉ khi n hoặc n+1 bằng 0 . 

Ta thấy chúng đều không thoả mãn .

vậy.............

            

Nguyễn Đức Trí
3 tháng 8 2023 lúc 19:30

Bạn xem lại câu A+B mới là số chính phương k?

Lê Song Phương
3 tháng 8 2023 lúc 20:11

 Câu a) mình không hiểu đề bài cho lắm nên mình làm câu b) với c) nhé:

 Ta sẽ chứng minh \(A=1+3+5+...+\left(2n-1\right)=n^2\) bằng quy nạp. Với \(n=1\) thì \(1=1^2\), luôn đúng. Giả sử khẳng định đúng đến \(n=k\). Với \(n=k+1\) thì ta có:

 \(A=1+3+5+...+\left(2k+1\right)\)

 \(A=1+3+5+...+\left(2k-1\right)+\left(2k+1\right)\)

 \(A=k^2+2k+1\)

 \(A=\left(k+1\right)^2\) là SCP.

Vậy khẳng định được chứng minh. \(\Rightarrow\) A là SCP với mọi n (đpcm).

c) Ta có \(B=2+4+6+...+2n\)

\(B=2\left(1+2+3+...+n\right)\)

 Ta sẽ chứng minh \(1+2+3+...+n=\dfrac{n\left(n+1\right)}{2}\) nhưng không phải bằng quy nạp vì mình nghĩ bạn nên biết nhiều cách khác nhau để chứng minh một đẳng thức. Mình sẽ dùng phương pháp đếm bằng 2 cách để chứng minh điều này.

 Ta xét 1 nhóm gồm \(n+1\) người, mỗi người đều bắt tay đúng 1 lần với 1 người khác. Khi đó ta sẽ tính số cái bắt tay đã xảy ra bằng 2 cách:

  Cách 1: Ta chọn ra 1 người, gọi là người số 1, bắt tay với \(n\) người khác. Sau đó ta chọn ra người số 2, bắt tay với \(n-1\) người khác (không tính người số 1). Chọn ra người số 3, bắt tay với \(n-2\) người (không tính người số 1 và 2). Cứ tiếp tục như thế, cho đến người thứ \(n-1\) thì sẽ có 1 cái bắt tay với người thứ \(n\). Do đó số cái bắt tay đã xảy ra là \(1+2+...+n\)

 Cách 2: Số cái bắt tay chính là số cách chọn 2 người (không kể thứ tự) trong n người đó. Số cách chọn ra người thứ nhất là \(n+1\), chọn ra người thứ hai là \(n\). Do đó số cách chọn 2 người có kể thứ tự sẽ là \(n\left(n+1\right)\). Nhưng do ta không tính thứ tự nên số cái bắt tay đã xảy ra là \(\dfrac{n\left(n+1\right)}{2}\)

 Do vậy, ta có \(1+2+...+n=\dfrac{n\left(n+1\right)}{2}\)

 Như thế, \(B=2\left(1+2+...+n\right)=2.\dfrac{n\left(n+1\right)}{2}=n\left(n+1\right)\) không thể là số chính phương, bởi vì: \(n^2=n.n< n\left(n+1\right)< \left(n+1\right)\left(n+1\right)=\left(n+1\right)^2\)

 

Thu Đào
Xem chi tiết
Lưu Nguyễn Hà An
11 tháng 8 2023 lúc 14:13

Tham khảo nhé:

�=5�+4�

a)

Để  chia hết cho 2 thì 5�  2 và 4�  2.
mà 5�  2 thì   2

còn 4�  2 thì luôn đúng.

Vậy để   2 thì   2, hay �={2�,�∈�} và �∈�

b)

Để  chia hết cho 5 thì 5�  5 và 4�  5.
mà 5�  5 thì luôn đúng

còn 4�  2 thì   5.

Vậy để   5 thì   5, hay �={5�,�∈�} và �∈�

c)

Để  chia hết cho 10 thì 5�  10 và 4�  10.
mà 5�  10 thì   2

còn 4�  10 thì   5.

Vậy để   10 thì   2 và   5,

hay �=2�,�=5ℎ;�,ℎ∈�

Giải thích:

Số chia hết cho 2 là số chẵn có dạng 2�,�∈�

Số chia hết cho 5 là số tận cùng là 0 và 5 hay là số có dạng 5�,�∈�

Số chia hết cho 10 là số chia hết cho cả 2 và 5 nên có dạng là 

Lưu Nguyễn Hà An
11 tháng 8 2023 lúc 14:14

THAM KHẢO nhé:

=5+4

a)

Để  chia hết cho 2 thì 5  2 và 4  2.
mà 
5  2 thì   2

còn 4  2 thì luôn đúng.

Vậy để   2 thì   2, hay ={2,} và 

b)

Để  chia hết cho 5 thì 5  5 và 4  5.
mà 
5  5 thì luôn đúng

còn 4  2 thì   5.

Vậy để   5 thì   5, hay ={5,} và 

c)

Để  chia hết cho 10 thì 5  10 và 4  10.
mà 
5  10 thì   2

còn 4  10 thì   5.

Vậy để   10 thì   2 và   5,

hay =2,=5;,

Giải thích:

Số chia hết cho 2 là số chẵn có dạng 2,

Số chia hết cho 5 là số tận cùng là 0 và 5 hay là số có dạng 5,

Số chia hết cho 10 là số chia hết cho cả 2 và 5 nên có dạng là