cho hình vẽ, biết góc abc=80 độ, am//cp
a.cm bn//cp,am//bn
b.kẻ bx là tia đối bn, cm bx p/g abc
Cho tam giác ABC vuông tại A, có góc ABC=6- độ
1. Tính số đo góc ACB
2. Trên tia đối của tia AC lấy điểm M sao cho AM=AC. CM: tia BA là tia p/g của góc MBC
3. Vẽ tia Bx là tia p/g của góc ABC. Qua C vẽ đường thẳng vuông góc với AC cắt Bx tại N. CM: AC=1/2 BN
a, tam giác ABC vuông tại A (gt)
=> góc ABC + góc ACB = 90 (Đl)
góc ABC = 60 (gt)
=> góc ACB = 30
b, xét tam giácCAB và tam giác MAB có : AB chung
AM = AC (gt)
góc CAB = góc MAB = 90
=> tam giác CAB = tam giác MAB (2cgv)
=> góc CBA = góc MBA (đn) mà BA nằm giữa BC và BM
=> BA là pg của góc MBC (đn)
tam giác ABC cân tại A (AB>BC). Trên tia BC lấy M sao cho MA = MB. Vẽ tia Bx//AM (Bx và AM cùng nằm trong nửa mặt phẳng là AB). Trên tia Bx lấy N sao cho BN = CM. Chứng minh: góc ABN = góc ACM
theo t/c góc ngoài tam giác ACB ta có:
ACM=CAB+ABC=180-2ABC+ABC=180-ABC
ABN=180-MAB(do BN//AM)
=180-ABC=> DPCM
Cho tam giác ABC có AB=AC và AB>BC. Trên tia BC, lấy điểm M sao cho MC=MB. Vẽ tia Bx//AM (Bx và Am cùng nằm trong nửa mặt phẳng MBA). Trên tia Bx lấy điểm N sao cho BN+CM
a) Chứng minh góc ABN=góc ACM
b) So sánh AM và AN
cho tam giác ABC cân tại A (AB>BC) . Trên tia BC lấy điểm M sao cho MA=MB . Vẽ tia Bx song song với AM (Bx và AM cùng nằm trong nửa mặt phẳng bờ AB). Trên tia Bx lấy điểm N sao cho BN=CM. Chứng minh rằng:
a, Góc ABN=Góc ACM
b, Tam giác AMN cân
Đáp án:
a) Xét ΔABN và ΔACM có:
+ AB = AC
+ góc ABN = góc ACM (do BN// AM)
+ BN = CM
=> ΔABN = ΔACM (c-g-c)
b) DO ΔABN = ΔACM
=> AN = AM
=> ΔAMN cân tại A
Cho tam giác ABC cân tại A (AB<BC). Trên tia BC lấy điểm M sao cho MA=MB. Vẽ tia Bx//AM ( Bx và AM cùng nằm trong nửa mặt phẳng bờ AB). Trên Bx lấy điểm N sao cho BN=CM. Chứng minh: Tam giác AMN cân
Sorry bn mk chua hoc tg cân nên ko bt giai nhug hih mk bt ve
ko bt co dug o nhe!
sai đề rùi
cân tại A → AB=AC rùi còn j nữa
thấy đugs thì tick nha
Cho tam giác ABC cân tại A (AB > BC). Trên tia BC lấy điểm M sao cho MA = MB. Vẽ Bx // AM (Bx và AM cùng nằm trong nửa mp bờ AB). Trên tia Bx lấy điểm N sao cho BN = CM. Chứng minh : a) ABN = ACM b) tam giác AMN cân
bn tham khảo nha:
https://olm.vn/hoi-dap/detail/6244183766.html
Cho tam giác ABC cân tại A(AB>BC). Trên tia BC lấy điểm M sao cho MA=MB. Vẽ tia Bx// AM ( Bx và AM cùng nằm trong nửa mặt phẳng bờ AB). Trên tia Bx lấy điểm N sao cho BN=CM. Chứng minh rằng:
a) Tam giác ABN= tam giác ACM;
b) Tam giác AMN cân;
cíu em với mấy anh chị ơiiiiiiiiiiiiiiiiiiiiiiiiiii
a: Xét ΔABN và ΔACM có
AB=AC
góc ABN=góc ACM
BN=CM
=>ΔABN=ΔACM
b: ΔABN=ΔACM
=>AM=AN
=>ΔAMN cân tại A
cho tam giác ABC cân tại A (AB>AC). Trên BC lấy M sao cho MA=MB. Vẽ tia Bx // AM (Bx và AM cùng nằm trong nữa mặt phẳng MAB). Trên Bx lấy N sao cho BN=CN
a, chứng minh góc ABM= góc ACN
b, chứng minh tam giác AMN
tham khảo ở đây nhé :
Câu hỏi của Nàng tiên cá - Toán lớp 7 - Học toán với OnlineMath
Cho \(\Delta ABC\) cân tại A (AB > BC). Trên tia BC lấy điểm M sao cho MA = MB. Vẽ tia Bx // AM (Bx và AM cùng nằm trong nửa mặt phẳng bờ AB). Trên tia Bx lấy điểm N sao cho BN = CM. C/minh: \(\Delta AMN\) cân.
à quên , nối M với N nhé.
giải
vì MA = BM nên \(\Delta ABM\)cân tại M \(\Rightarrow\)\(\widehat{BAM}=\widehat{MBA}\)
vì Bx // AM nên \(\widehat{MAB}+\widehat{ABN}=180^o\)hay \(\widehat{MBA}+\widehat{ABN}=180^o\)( 1 )
vì \(\Delta ABC\)cân tại A nên \(\widehat{ABM}=\widehat{ACB}\)
Ta có : \(\widehat{ACB}+\widehat{ACM}=180^o\)hay \(\widehat{ABM}+\widehat{ACM}=180^o\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(\widehat{ABN}=\widehat{ACM}\)
Xét \(\Delta ABN\)và \(\Delta ACM\)có :
AB = AC ( gt )
\(\widehat{ABN}=\widehat{ACM}\)( cmt )
BN = CM ( gt )
Suy ra : \(\Delta ABN\)= \(\Delta ACM\)( c.g.c )
\(\Rightarrow\)AN = AM
\(\Rightarrow\)\(\Delta AMN\)cân tại A
Mk chỉ bt vẽ hình thôi, còn giải ra sao thì mk không bt
thông cảm ^^
k nha