Cho m,n là các số tự nhiên, m lẻ:
Chứng minh rằng \(\left(2^m-1,2^n+1\right)=1\)
a, chứng minh rằng tồn tại n thuộc N,số A=\(\frac{2^n+\left(-1\right)^{n+1}}{3}\)cũng là số tự nhiên
b,chứng minh rằng có duy nhất 1 số tự nhiên n sao cho số Anói trên có thể viết dưới dạng \(2.3^{m-1}+\left(-1\right)^m\)vs m là số tự nhiên
mình cần gấp lắm ai giải nhanh đầy đủ nhất mình tick
Chứng minh rằng:
a) Số các nghiệm tự nhiên của phương trình \(x_1+x_2+...+x_m=n\left(n,m\in N\cdot\right)\) là \(C^n_{m+n-1}\).
b) Số các nghiệm nguyên dương của phương trình \(x_1+x_2+...+x_m=n\left(m\le n;m,n\in N\cdot\right)\) là \(C^{m-1}_{n-1}\).
Em có tìm một số lời giải cho bài toán này nhưng vẫn không hiểu lắm, mong ai đó có lời giải chi tiết và dễ hiểu :)
Bài toán chia kẹo kinh điển đây mà.
Trước hết chúng ta đếm 1 chút theo kiểu lớp 1 lớp 2 gì đó: có 1 đoạn thẳng, cần chia đoạn thẳng ấy làm 3 phần, vậy cần chấm lên đoạn thẳng ấy mấy điểm? Câu trả lời rõ ràng là 2 điểm. Cần chia 1 con cá thành 3 khúc, ta cần 2 nhát cắt; cần ngăn 4 con cọp xếp hàng ngang để chúng đỡ cắn nhau, ta cần 3 vách ngăn. Hay để chia 1 đối tượng làm n phần, ta cần dùng n-1 vách ngăn để chia nó ra, Như thế này:
Bây giờ có số tự nhiên n, ta phân tích nó như sau:
\(n=1+1+1+...+1+1+1\)
Giả sử ta "vách ngăn" vào một vài vị trí giữa các số 1, kiểu thế này:
\(1+1+\left|1+1+1\right|+1+|1+1+...+1\)
Rõ ràng với 3 vách ngăn trên, ta chia n thành 3+1=4 phần, mỗi phần đều có giá trị nguyên dương, lần lượt là 2,3,1,n-6.
Bây giờ cần chia dãy \(1+1+...+1\) trên thành m phần, vậy cần đặt bao nhiêu vách ngăn? Cũng như ban đầu đã phân tích, ta cần đặt \(m-1\) tấm vách ngăn.
Ta có bao nhiêu vị trí để đặt \(m-1\) vách ngăn nói trên? Có n số 1, ta sẽ có \(n-1\) vị trí đặt vách ngăn, sao cho giữa 2 vách ngăn có ít nhất một số 1 (hay giữa 2 vách ngăn luôn là 1 giá trị nguyên dương).
Tóm lại, để chia dãy tổng \(1+1+...+1\) (n số hạng) thành m phần, sao cho mỗi phần chứa ít nhất một số 1, ta cần đặt \(m-1\) tấm vách ngăn vào \(n-1\) vị trí khả dĩ. Như vậy, ta có \(C_{n-1}^{m-1}\) cách.
Hiển nhiên, giá trị của mỗi phần (tức là tổng các số 1 trong phần đó) chính là giá trị nghiệm \(x_i\) của pt \(\sum\limits^m_{i=1}x_i=n\). Vậy pt có \(C_{n-1}^{m-1}\) nghiệm nguyên dương.
//Bay giờ tới nghiệm tự nhiên thì đơn giản, số tự nhiên khác số nguyên dương đúng 1 số 0, bây giờ ta "loại" nó đi là ra bài toán bên trên. Bằng cách đặt \(y_1=x_1+1;y_2=x_2+1...;y_m=x_m+1\), ta đảm bảo \(y_i\) luôn nguyên dương khi \(x_i\) tự nhiên.
Khi đó:
\(y_1+y_2+...+y_m=\left(x_1+1\right)+\left(x_2+1\right)+...+\left(x_m+1\right)\)
\(=\left(x_1+x_2+...+x_m\right)+m=n+m\)
Quay về bài trên, ta có pt \(y_1+y_2+...+y_m=n+m\) có \(C_{n+m-1}^{m-1}\) nghiệm.
Ứng với mỗi \(y_i\) cho đúng 1 giá trị \(x_i=y_i-1\) tương ứng, do đó pt:
\(\sum\limits^m_{i=1}x_i=n\) có \(C_{n+m-1}^{m-1}\) nghiệm tự nhiên
Công thức đầu của em có vẻ bị sai :D
Chứng minh rằng phương trình:
\(x^n-\left(m+1\right)x-1=0\) luôn có ít nhất một nghiệm với mọi tham số m, biết n là số tự nhiên lẻ và \(n\ge3\)
Cho biểu thức \(f\left(x\right)=5^{\sqrt{1+\dfrac{1}{x^2}+\dfrac{1}{\left(x+1\right)^2}}}\), với x>0. Biết rằng f(1).f(2)...f(2020) = \(5^{\dfrac{m}{n}}\) với m, n là các số nguyên dương và phân số m/n tối giản. Chứng minh m-n^2 = -1
\(\sqrt{1+\dfrac{1}{x^2}+\dfrac{1}{\left(x+1\right)^2}}=\sqrt{\dfrac{x^2+\left(x+1\right)^2+x^2\left(x+1\right)^2}{x^2\left(x+1\right)^2}}=\sqrt{\dfrac{x^2\left(x+1\right)^2+2x^2+2x+1}{x^2\left(x+1\right)^2}}\)
\(=\sqrt{\dfrac{\left(x^2+x\right)^2+2\left(x^2+x\right)+1}{\left(x^2+x\right)^2}}=\sqrt{\dfrac{\left(x^2+x+1\right)^2}{\left(x^2+x\right)^2}}=\dfrac{x^2+x+1}{x^2+x}\)
\(=1+\dfrac{1}{x}-\dfrac{1}{x+1}\)
\(\Rightarrow f\left(1\right).f\left(2\right)...f\left(2020\right)=5^{1+1-\dfrac{1}{2}+1+\dfrac{1}{2}-\dfrac{1}{3}+...+1+\dfrac{1}{2020}-\dfrac{1}{2021}}\)
\(=5^{2021-\dfrac{1}{2021}}\)
\(\Rightarrow\dfrac{m}{n}=2021-\dfrac{1}{2021}=\dfrac{2021^2-1}{2021}\)
\(\Rightarrow m-n^2=2021^2-1-2021^2=-1\)
cho 2n+1 số nguyên , trong đó có đúng mốt số 0 và các số 1,2,3,...,n mỗi số xuất hiện 2 lần. chứng minh rằng với mọi số tự nhiên n ta luôn sắp xếp được 2n+1 số nguyên trên thành sao cho với mọi m=1,2,...,n có đúng m số nằm giữa hai số m
cho các số tự nhiên m và n với: (m.n)=1 . tìm \(\left(m^2+n^2.m+n\right)\)
1. Chứng minh rằng nếu \(p\ge2\) là một số tự nhiên sao cho \(\left\{{}\begin{matrix}2^p+2⋮p\\2^p+1⋮\left(p-1\right)\end{matrix}\right.\) thì số tự nhiên \(m=2^p+2\) cũng thoả mãn tính chất ấy ( nghĩa là khi đó thay m vào p thì đk vẫn thoả mãn \(\left\{{}\begin{matrix}2^m+2⋮m\\2^m+1⋮\left(m-1\right)\end{matrix}\right.\))
cho các số tự nhiên m,n và p là số nguyên tố và
p/m-1=m+n/p chứng minh rằng p2=n+2
1 Cho số tự nhiên n với n > 2. Biết 2n - 1 là 1 số nguyên tố. Chứng tỏ rằng số 2n + 1 là hợp số
2 Cho 3 số: p, p+2014.k, p+2014.k là các số nguyên tố lớn hơn 3 vá p chia cho 3 dư 1. Chứng minh rằng k chia hết cho 6
3 Cho 2 số tự nhiên a và b, trong đó a là số lẻ. Chứng minh rằng 2 số a và a.b+22013là 2 số nguyên tố cùng nhau
4 Cho m và n là các số tự nhiên, m là số lẻ. Chứng tỏ rằng m và mn+8 là 2 số nguyên tố cùng nhau
5 Cho A=32011-32010+...+33-32+3-1. Chứng minh rằng a=(32012-1) : 4
6 Cho số abc chia hết cho 37. Chứng minh rằng số bca chia hết cho 37