Tìm số nguyên n:
a) 2n-3⋮n+1
b) n+2⋮2n-3
c) 6n+2⋮2n-1
Làm 1 câu cũng dc ạ!!
Chứng minh rằng : Với n ϵ N, thì các số sau là hai số nguyên tố cùng nhau
a) n+1 và 2n+3
b) n+1 và 3n+4
c) 2n+3 và 4n+8
d) n+3 và 2n+5
LÀM 1 CÂU BẤT KÌ CŨNG ĐƯỢC Ạ
a,
Gọi \(d=ƯC\left(n+1;2n+3\right)\) với \(d\in N\)
\(\Rightarrow\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\) \(\Rightarrow2n+3-2\left(n+1\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow n+1\) và \(2n+3\) nguyên tố cùng nhau với mọi \(n\in N\)
Các câu sau em biến đổi tương tự
Tìm các số nguyên n:
2n-3 ⋮ n+1
GIÚP E VỚI Ạ, LÀM ĐẦU TIÊN E TICK CHO!
Ta có:
2n - 3 = 2n + 2 - 5 = 2(n + 1) - 5
Để (2n+ 3) ⋮ (n + 1) thì 5 ⋮ (n + 1)
⇒ n + 1 ∈ Ư(5) = {-5; -1; 1; 5}
⇒ n ∈ {-6; -2; 0; 4}
TÌM SỐ NGUYÊN N ĐỂ :
a, n +5 chia hết cho n-1
b, 2n - 4 chia hết cho n +2
c, 6n + 4 chia hết cho 2n + 1
d, 3 -2n chia hết cho n + 1
Tìm số tự nhiên n:
a) 2n + 11 chia hết cho n + 3
b) n + 5 chia hết cho n - 1
c) 3n + 10 chia hết cho n + 2
d) 2n + 7 chia hết cho 2n + 1
Làm mấy câu cung đc ạk!!!
a) 2n + 11 chia hết cho n + 3
⇒ 2n + 6 + 5 chia hết cho n + 3
⇒ 2(n + 3) + 5 chia hết cho n + 3
⇒ 5 chia hết cho n + 3
⇒ n + 3 ∈ Ư(5) = {1; -1; 5; -5}
⇒ n ∈ {-2; -4; 2; -8}
Mà n là số tự nhiên
⇒ n ∈ {2}
b) n + 5 chia hết cho n - 1
⇒ n - 1 + 6 chia hết cho n - 1
⇒ 6 chia hết cho n - 1
⇒ n - 1 ∈ Ư(6) = {1; -1; 2; -2; 3; -3; 6; -6}
⇒ n ∈ {2; 0; 3; -1; 4; -2; 7; -5}
Mà n là số tự nhiên
⇒ n ∈ {2; 0; 3; 4; 7}
c) 3n + 10 chia hết cho n + 2
⇒ 3n + 6 + 4 chia hết cho n + 2
⇒ 3(n + 2) + 4 chia hết cho n + 2
⇒ 4 chia hết cho n + 2
⇒ n + 2 ∈ Ư(4) = {1; -1; 2; -2; 4; -4}
⇒ n ∈ {-1; -3; 0; -4; 2; -6}
Mà n là số tự nhiên
⇒ n ∈ {0; 2}
d) 2n + 7 chia hết cho 2n + 1
⇒ 2n + 1 + 6 chia hết cho 2n + 1
⇒ 6 chia hết cho 2n + 1
⇒ 2n + 1 ∈ Ư(6) = {1; -1; 2; -2; 3; -3; 6; -6}
⇒ n ∈ {0; -1; 1/2; -3/2; 1; -2; 5/2; -7/2}
Mà n là số tự nhiên
⇒ n ∈ {0; 1}
Tìm các số nguyên x,y:
a) (7-2x) (y-3) =12
b) (2x-3) (y+1)=12
c)xy-3y=5
LÀM 1 CÂU CŨNG DC Ạ!
a. Với $x,y$ là số nguyên thì $7-2x, y-3$ cũng là số nguyên. Mà $(7-2x)(y-3)=12$ và $7-2x$ là số lẻ nên ta xét các TH sau:
TH1:
$7-2x=1, y-3=12\Rightarrow x=3; y=15$ (tm)
TH2:
$7-2x=-1; y-3=-12\Rightarrow x=4; y=-9$ (tm)
TH3:
$7-2x=3; y-3=4\Rightarrow x=2; y=7$ (tm)
TH4:
$7-2x=-3; y-3=-4\Rightarrow x=5; y=-1$ (tm)
b.
Với $x,y$ là số nguyên thì $2x-3, y+1$ cũng là số nguyên. Mà $(2x-3)(y+1)=12$ và $2x-3$ là số lẻ nên ta có các TH sau:
TH1: $2x-3=1; y+1=12\Rightarrow x=2; y=11$ (tm)
TH2: $2x-3=-1; y+1=-12\Rightarrow x=1; y=-13$ (tm)
TH3: $2x-3=3; y+1=4\Rightarrow x=3; y=3$ (tm)
TH4: $2x-3=-3; y+1=-4\Rightarrow x=0; y=-5$ (tm)
c.
$xy-3y=5$
$y(x-3)=5$
Với $x,y$ là số nguyên thì $x-3, y$ cũng là số nguyên.
Mà $y(x-3)=5$ nên ta có các TH sau:
TH1: $x-3=1, y=5\Rightarrow x=4; y=5$ (tm)
TH2: $x-3=-1; y=-5\Rightarrow x=2; y=-5$ (tm)
TH3: $x-3=5; y=1\Rightarrow x=8; y=1$ (tm)
TH4: $x-3=-5; y=-1\Rightarrow x=-2; y=-1$ (tm)
Tìm số nguyên x biết:
a) (x-2).35=37
b) x2-2x=0
c) (2x-1)2=49
Làm 1 câu bất kì cũng dc ạ!
a) (x - 2).3⁵ = 3⁷
x - 2 = 3⁷ : 3⁵
x - 2 = 3²
x - 2 = 9
x = 9 + 2
x = 11
b) x² - 2x = 0
x(x - 2) = 0
⇒ x = 0 hoặc x - 2 = 0
*) x - 2 = 0
x = 2
Vậy x = 0; x = 2
c) (2x - 1)² = 49
⇒ 2x - 1 = 7 hoặc 2x - 1 = -7
*) 2x - 1 = 7
2x = 7 + 1
2x = 8
x = 8 : 2
x = 4
*) 2x - 1 = -7
2x = -7 + 1
2x = -6
x = -6 : 2
x = -3
Vậy x = -3; x = 4
Tìm số nguyên x biết:
a) 12-(2x2-3)=7
b) 3x2-12=2x2+4
c) 2x-3.(2x+1)=4x-5.(x-3)
d) (x-2).(x+5)=0
Làm 1 câu bất kì cũng dc ạ!
a, 12 - (2\(x^2\) - 3) = 7
2\(x^2\) - 3 = 12 - 7
2\(x^2\) - 3 = 5
2\(x^2\) = 8
\(x^2\) = 4
\(\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right.\)
a) \(12-\left(2x^2-3\right)=7\\ 12-2x^2+3=7\\ 15-2x^2=7\\ 2x^2=15-7=8\\ x^2=8:2=4\\ x=\pm2\)
b) \(3x^2-12=2x^2+4\\ 3x^2-2x^2=12+4\\ x^2=16\\ x=\pm4\)
b, 3\(x^2\) - 12 = 2\(x^2\) + 4
3\(x^2\) - 2\(x^2\) = 12 + 4
\(x^2\) = 16
\(\left[{}\begin{matrix}x=-4\\x=4\end{matrix}\right.\)
Tìm số nguyên x biết:
a) (x-1) (x3+8)=0
b) (x+1) ( 2x2-8)=0
c) (x2+3)(x+5)<0
Làm 1 câu bất kì cũng dc ạ!
a) \(\left(x-1\right)\left(x^3+8\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\x^3+8=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x^3=-8\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
b) \(\left(x+1\right)\left(2x^2-8\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+1=0\\2x^2-8=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x^2=4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x=\pm2\end{matrix}\right.\)
c) Vì : \(x^2+3\ge3>0\forall x\)
nên để : \(\left(x^2+3\right)\left(x+5\right)< 0\)
Thì : \(x+5< 0\\ \Rightarrow x< -5\)
Tìm số nguyên n sao cho :
a, n-2017 chia hết cho n-2018
b, 2018-n chia hết cho n-2019
c, 2n-3 chia hết cho 2n-5
d, 2n-1 chia hết cho n+2
e, 3-2n chia hết cho 1-n
Làm nhanh giúp mik nhé .CHÚC CÁC BẠN ĂN TẾT VUI VẺ NHÉ!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!^.^
a) Ta có : n-2017\(⋮\)n-2018
\(\Rightarrow\)n-2018+1\(⋮\)n-2018
Vì n-2018\(⋮\)n-2018 nên 1 \(⋮\)n-2018
\(\Rightarrow n-2018\inƯ\left(1\right)=\left\{\pm1\right\}\)
+) n-2018=-1
n=2017 (thỏa mãn)
+) n-2018=1
n=2019 (thỏa mãn)
Vậy n\(\in\){2017;2019}
c) Ta có : 2n-3\(⋮\)2n-5
\(\Rightarrow\)2n-5+2\(⋮\)2n-5
Vì 2n-5\(⋮\)2n-5 nên 2\(⋮\)2n-5
\(\Rightarrow2n-5\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
+) 2n-5=-1\(\Rightarrow\)2n=4\(\Rightarrow\)n=2 (thỏa mãn)
+) 2n-5=1\(\Rightarrow\)2n=6\(\Rightarrow\)n=3 (thỏa mãn)
+) 2n-5=-2\(\Rightarrow\)2n=3\(\Rightarrow\)n=1,5 (không thỏa mãn)
+) 2n-5=2\(\Rightarrow\)2n=7\(\Rightarrow\)n=3,5 (không thỏa mãn)
Vậy n\(\in\){2;3}