10 cho \(M=x^{2017}-x^{2013}\left(x\in Z\right)\)chứng minh M chia hết cho 30
1) M=x^2017-x^2013(x thuộc Z)
chứng minh M chia hết cho 30
2) P= \(\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}=1}\right)\left(\dfrac{1-x}{\sqrt{x}}\right)^2\)
a) rút gọn
b) chứng minh P>0 với 0<x<1
c) mính giá trị lớn nhật của P
Cho x;y;z là các số nguyên và\(\hept{\begin{cases}P=\left(x+2012\right)^5+\left(2y-2013\right)^5+\left(3z+2014\right)^5\\S=x+2y+3z+2013\end{cases}}\) Chứng minh rằng P chia hết cho 30 khi và chỉ khi S chia hết cho 30.
Cho M = \(\left(xy-1\right).\left(x^{2017}+y^{2018}\right)-\left(xy+1\right)\left(x^{2017}-y^{2018}\right)\)
Chứng minh rằng: M \(⋮2\) với mọi x, y \(\in Z\)
1) tìm x,y biết |x-y|+|y-z|+|z-x|=2017
2) so sánh a và b biết a=3^2017+5/3^2015+5
b=3^2015+1/3^2013+1
3) chứng minh rằng 24^54 . 54^24 . 2^10 chia hết cho 72^63
Bài 3:
\(24^{54}\cdot54^{24}\cdot2^{10}\)
\(=\left(2^3\cdot3\right)^{54}\cdot\left(3^3\cdot2\right)^{24}\cdot2^{10}\)
\(=2^{108}\cdot3^{54}\cdot3^{72}\cdot2^{24}\cdot2^{10}\)
\(=2^{142}\cdot3^{78}\)
\(72^{63}=\left(2^3\cdot3^2\right)^{63}=2^{189}\cdot3^{126}⋮2^{142}\cdot3^{78}\)(ĐPCM)
Cho ba số nguyên x,y,z thỏa mãn điều kiện x+y+z chia hết cho 6. Chứng minh rằng biểu thức
\(M=\left(x+y\right)\left(y+z\right)\left(z+x\right)-2xyz\) chia hết cho 6
Có: \(x+y+z⋮6\)
\(\Rightarrow x+y+z=6k\left(k\in Z\right)\)
\(\Rightarrow\hept{\begin{cases}x+y=6k-z\\y+z=6k-x\\z+x=6k-y\end{cases}}\)
\(M=\left(x+y\right)\left(y+z\right)\left(z+x\right)-2xyz\)
\(\Leftrightarrow M=x^2y+y^2z+z^2y+xy^2+xz^2+x^2z-2xyz-2xyz\)
\(\Leftrightarrow M=xy\left(x+y\right)+yz\left(y+z\right)+xz\left(z+x\right)\)
\(\Leftrightarrow M=xy\left(6k-z\right)+yz\left(6k-x\right)+xz\left(6k-y\right)\)
\(\Leftrightarrow M=6k\left(xy+yz+zx\right)-3xyz\)
Ta có:\(x+y+z=6k\left(k\in Z\right)\)
\(\Rightarrow\)x+y+z là số chẵn.
\(\Rightarrow\)trong 3 số x;y;z có ít nhất 1 số chẵn
\(\Rightarrow xyz⋮2\)
\(\Rightarrow3xyz⋮6\)
\(M=6k\left(xy+yz+zx\right)-3xyz⋮6\)( vì \(6k\left(xy+yz+zx\right)⋮6\))
đpcm
Cho x,y,z là các sô nguyên thoả mãn \(x+y+z\)chia hết cho 6
Chứng minh \(M=\left(x+y\right)\left(x+z\right)\left(y+z\right)-2xyz\)chia hết cho 6
Ta có:\(M=\left(x+y\right)\left(x+z\right)\left(y+z\right)-2xyz\)
\(=\left(x^2+xz+xy+yz\right)\left(y+z\right)-2xyz\)
\(=x^2y+x^2z+xyz+xz^2+xy^2+xyz+y^2z+yz^2-2xyz\)
\(=x^2y+x^2z+xz^2+xy^2+y^2z+yz^2\)
\(=\left(x^2y+xy^2+xyz\right)+\left(y^2z+yz^2+xyz\right)+\left(z^2x+zx^2+xyz\right)-3xyz\)
\(=xy\left(x+y+z\right)+yz\left(x+y+z\right)+xz\left(x+y+z\right)-3xyz\)
\(=\left(x+y+z\right)\left(xy+yz+xz\right)-3xyz\)
Vì \(\left(x+y+z\right)\left(xy+yz+xz\right)⋮6\)
Giả sử:Trg 3 số x,y,z không tồn tại số nào chẵn
=> x+y+z lẻ mà 1 số lẻ không chia hết cho 6 nên điều g/s sai
=> tồn tại ít nất 1 trong 3 số x,y,z chẵn
Giả sử: x chẵn
=> x chia hết cho 2 => 3xyz chia hết cho 6
=> đpcm
cho hai đa thức với hệ số nguyên f1(x), f2(x) thoả mãn \(..f\left(x\right)=f_1\left(x^3\right)+x\cdot f_2\left(x^3\right)..\)chia hết cho \(^{x^2+x+1}\).
Chứng minh rằng \(ƯSCLN\left(f1\left(2017\right),f2\left(2017\right)\right)\ge2016...???\)
THẦY MÌNH GỢI Ý nè chứng minh f1(x) và f2(x) chia hết cho x-1 dựa vào x^3-1 chia hết cho x-1
từ đó suy ra f1(2017) và f2(2017) chia hết cho 2016 => đpcm CHỨNG MINH HỘ NHA MK KO BIẾT LÀM
bài này khó khinh lên đc mình bó tay
trước tiên ta cần chứng minh một bài toán phụ:f(x) là 1 đa thức với hệ số nguyên:f(x)=anxn+an-1xn-1+....+a1x+a0
a,b là 2 số nguyên khác nhau,chứng minh f(a)-f(b) chia hết cho (a-b)
lấy f(a)-f(b) rồi ghép các hạng tử có cùng bậc là ra nka bn
áp dung:f(x)=f1(x3)-f1(1) + x.f2(X3) -x.f2(1)+f1(1)+x.f2(1) mà f1(X3)-f1(1) chia hết cho x^3-1 nên chia hết cho x2+x+1,tương tự với f2,theo giả thiết thì f(x) chia hết cho x2 +x+1 nên f1(1)+x.f2(1) chia hết cho x2 +x+1 mà f1(1)+x.f2(1) có bậc bé hơn hoặc bằng 1 nên f1(1) + xf2(1)=0
SUY RA:f1(1)=f2(1)=0
theo định lí bezout suy ra f1(x) chia hết cho x-1 và f2(x) chia hết cho x-1
bài toán đã dc giải guyết,trong lời giải có thể có chút sai sót và hơi khó hiểu nên mong các bạn góp ý và cho mình
Cho bt E=(x2017+y2017+z2017)-(x2013+y2013+z2013) chia hết cho 30 với mọi x,y,z nguyên dương
Cho x,y,z thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\), tính giá trị biểu thức: \(M=\frac{19}{4}+\left(x^{2013}+y^{2013}\right)\left(y^{2015}+z^{2015}\right)\left(z^{2017}+x^{2017}\right)\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\left(x;y;z,x+y+z\ne0\right)\)
\(\Rightarrow\frac{xy+yz+xz}{xyz}=\frac{1}{x+y+z}\)
\(\Rightarrow\left(xy+yz+xz\right)\left(x+y+z\right)=xyz\)
\(\Leftrightarrow\left(xy+yz+xz\right)\left(x+y+z\right)-xyz=0\)
\(\Leftrightarrow\left(xy+yz\right)\left(x+y+z\right)+xz\left(x+z\right)=0\)
\(\Leftrightarrow y\left(x+z\right)\left(x+y+z\right)+xz\left(x+z\right)=0\)
\(\Leftrightarrow\left(x+z\right)\left(xy+y^2+yz\right)+xz\left(x+z\right)=0\)
\(\Leftrightarrow\left(x+z\right)\left(xy+y^2+yz+xz\right)=0\)
\(\Leftrightarrow\left(x+z\right)\left[y\left(x+y\right)+z\left(x+y\right)\right]=0\)
\(\Leftrightarrow\left(x+z\right)\left(x+y\right)\left(y+z\right)=0\)
Từ đó \(x=-z\)hoặc \(x=-y\)hoặc \(y=-z\)
-Nếu \(x=-z\Rightarrow z^{2017}+x^{2017}=0\Rightarrow M=\frac{19}{4}+0=\frac{19}{4}\)
Tương tự với các trường hợp còn lại, ta cũng tính được \(M=\frac{19}{4}\)