Cho ΔABC vuông tại A, kẻ AH vuông góc BC, H thuộc BC. Tia phân giác của góc HAC cắt BC ở E. Chứn minh rằng: tam giác ABE là tam giác cân.
cho tam giác ABC vuông tại A . Kẻ AH vuông góc với BC , Tia phân giác của góc HAB cắt Bc ở D . Tia phân giác của góc HAC cắt BC ở E.
a) Chứng Minh các tam giác ABE và ACD là tam giác cân
b) gọi I là giao điểm của các tia phân giác của tam giác ADE
nhầm ấn lộn xíu !
Xét tam giác ABH ta có: ABH + BAH = 90
=> BAE + ABH = BAE + 90 - BAH = BAE - BAH + 90 = HAE + 90
Xét tam giác AHE ta có góc ngoài là AEC có số đo là HAE + 90
Mà ta thấy BAE + ABH là số đo cũng của góc ngoài AEC của tam giác ABE
=> BAE + ABH = HAE + 90
=>... tự làm
cho tam giác ABC vuông tại A . Kẻ AH vuông góc với BC , Tia phân giác của góc HAB cắt Bc ở D . Tia phân giác của góc HAC cắt BC ở E.
a) Chứng Minh các tam giác ABE và ACD là tam giác cân
b) gọi I là giao điểm của các tia phân giác của tam giác ADE
a: \(\widehat{BEA}+\widehat{EAH}=90^0\)
\(\widehat{BAE}+\widehat{CAE}=90^0\)
mà \(\widehat{HAE}=\widehat{CAE}\)
nên \(\widehat{BEA}=\widehat{BAE}\)
hay ΔABE cân tại B
\(\widehat{CAD}+\widehat{BAD}=90^0\)
\(\widehat{CDA}+\widehat{HAD}=90^0\)
mà \(\widehat{BAD}=\widehat{HAD}\)
nên \(\widehat{CAD}=\widehat{CDA}\)
hay ΔDCA cân tại C
b: Đề bài yêu cầu gì?
Cho tam giác ABC vuông tại A. Kẻ Ah vuông góc với BC (H thuộc BC). Tia phân giác của góc HAC cắt BC tại D. Tia phân giác của góc HAB cắt BC tại E. Chứng minh rằng AB + AC = BC + DE
Cho tam giác ABC vuông tại A . Phân giác BD , D thuộc AC . Kẻ DE vuông góc BC , E thuộc BC .
a) Chứng minh tam giác ABD = tam giác EBD
b) Kẻ AH vuông góc BC tại H , H thuộc BC . AH cắt BD tại I . Chứng minh AH // DE và tam giác AID cân
c) Chứng minh AE là phân giác của góc HAC
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC (H thuộc BC). Tia phân giác của góc HAC cắt BC tại D. Tia phân giác của góc HAB cắt tại E. Chứng minh rằng: AB + AC = DC + DE
Có thể thấy rằng DC + DE = EC < BC mà BC < AB + AC (bất đẳng thức tam giác) nên AB + AC > DC + DE.
Đề sai rồi bạn.
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC (H thuộc BC).
Tia phân giác của H A B ^ cắt BC ở D.
a) Chứng minh tam giác ACD là tam giác cân.
b) Các tia phân giác của H A C ^ và A H C ^ cắt nhau ở I. Chứng minh. CI đi qua trung điểm, của AD. Từ đó tính góc A I C ^ .
cho tam giác ABC vuông tại A . Kẻ AH vuông góc vs BC (H thuộc BC) . Tia phân giác của góc HAC cắt BC tại D. CMR: tam giác ABD là tam giác cân
chị tự kẻ hình :
AH _|_ BC (gt) => góc DHA = 90o (đn)
=> góc ADH + góc DHA + góc DAH = 180 (đl)
=> góc ADH + 90 + góc DAH = 180
=> góc ADH = 180 - 90 - góc DAH
=> góc ADH = 90 - góc DAH (1)
có tam giác ABC vuông tại A (gt)
=> góc DAB + góc CAD = 90
=> góc DAB = 90 - góc CAD (2)
AD là phân giác của góc HAC (gt) => góc CAD = góc DAH (đn) (3)
(1)(2)(3) => góc DAB = góc ADB
=> tam giác ABD cân tại B (dh)
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC tại E. Từ E kẻ ED vuông góc với BC tại D.
a, Chứng minh tam giác ABE= tam giác DBE.
b, Chứng minh BE là đường trung trực của đoạn thẳng AD.
c, Kẻ AH vuông góc với BC (H thuộc BC). Chứng minh AD là tia phân giác của góc HAC.
CÁC BẠN KO CẦN PHẢI VẼ HÌNH ĐÂU
Giải
a, Vì ED \(\perp\)BC ( gt ) \(\Rightarrow\)\(\Delta\)DBE là tam giác vuông tại D
Xét \(\Delta\) vuông ABE và \(\Delta\)vuông DBE, có :
BE : cạnh chung
góc ABE = góc DBE ( BE là tpg góc ABC )
\(\Rightarrow\)\(\Delta\)vuông ABE = \(\Delta\) vuông DBE ( cạnh huyền góc nhọn )
b, Vì \(\Delta\) ABE = \(\Delta\)DBE ( cmt )
\(\Rightarrow\)BA = BD ( 2 cạnh tương ứng ) \(\Rightarrow\)B nằm trên đtt của AD ( đ/l đảo )
AE = DE ( 2 cạnh tương ứng )\(\Rightarrow\) E nằm trên đtt của AD ( đ/l đảo )
Từ 2 điều trên \(\Rightarrow\) BE là đtt của đoạn thẳng AD
c, +, ta có : \(\Delta\)BAD cân tại B ( BA = BD )
\(\Rightarrow\)góc BAD = góc BDA ( t/c )
Vì AH \(\perp\) BC tại H ( gt ) \(\Rightarrow\) \(\Delta\) HAD vuông tại H
Xét \(\Delta\)vuông HAD, có :
góc HAD + góc HDA ( hay góc BDA ) = 90o ( 2 góc phụ nhau )
Xét \(\Delta\) vuông ABC, có :
góc CAD + góc BAD = 90o ( 2 góc phụ nhau )
Mà góc BDA = góc BAD ( cmt )
Từ các điều trên \(\Rightarrow\)góc HAD = góc CAD (1)
Mà tia AD nằm giữa 2 tia AH, AC ( cách vẽ ) (2)
Từ (1) và (2) \(\Rightarrow\) AD là tpg của góc HAC ( đpcm )
Cho tam giác ABC vuông tại A Kẻ AH vuông góc BC(H thuộc BC) Tia phân giác góc HAC cắt BC ở D.CMR Tam giác ABD cân
Ta có Góc BDA + Góc HAD = 90 độ ( 1 )
Lại có Góc BAD + Góc DAC = 90 độ ( 2 )
Mà AD là tia phân giác của góc HAC
->Góc HAD = Góc DAC ( 3 )
Từ ( 1 ) ( 2 ) ( 3 )
->Góc BAD = Góc BDA
Xét tam giác ABD có
Góc BAD = Góc BDA
-> Tam giác ABD là tâm giác cân tại B