Cho \(\Delta\)ABC,M là trung điểm của AB,vẽ MN//AB tại N
a)C/m MNlaf đường trung bình của \(\Delta\)ABC
b)Tia phân giác góc A cắt BC tại I.Vẽ k sao cho n là trung điểm của của IK.tứ giác AICK là hình gì?
c)C/m IB.NC=IC.MB
Cho tam giác ABC, M là trung điểm của ab, vé MN//BC tại N
a, Chứng Minh: AN=NC
b, Tia phân giác của góc A cắt BC tại I. Vẽ điểm K sao cho N là trung điểm của IK. Tứ giác AICK là hình gì? Vì sao?
c, Chứng minh:IB.NC=IC.MB
(*Cho tớ hỏi câu a làm thales được khum ạ, câu c làm theo đường phân giác có đúng khum ạ tại tớ thấy mn hay làm khác á)
a: Xét ΔABC có
MN//BC
nên \(\dfrac{AM}{MB}=\dfrac{AN}{NC}\)
=>\(\dfrac{AN}{NC}=1\)
=>AN=NC
b: Xét tứ giác AICK có
N là trung điểm chung của AC và KI
=>AICK là hình bình hành
c: Xét ΔABC có AI là phân giác
nên \(\dfrac{IB}{IC}=\dfrac{AB}{AC}\)
\(\dfrac{MB}{NC}=\dfrac{AB}{2}:\dfrac{AC}{2}=\dfrac{AB}{AC}\)
=>\(\dfrac{IB}{IC}=\dfrac{MB}{NC}\)
=>\(IB\cdot NC=MB\cdot IC\)
Cho \(\Delta ABC\)cân tại A. Trên AB lấy điểm M và trên tia đối của CA lấy điểm N sao cho: BM=CN. MN cắt BC tại I.
a) CMR: I là trung điểm của MN.
b) Đường trung trực của MN cắt tia phân giác góc A tại Q. CMR: QC vuông góc với AC.
Cho tam giác ABC có D trung điểm của AB, từ E vẽ DE song song với BC
a. Chứng minh DE là đường trung bình của tam giác ABC
b. Tia phân giác của góc A cắt BC tại I. Vẽ điểm K sao cho N là trung điểm của IK.
Giúp với ạ
1.Cho tam giác ABC ( AB>AC ) đường cao AH . Gọi M , N , P lần lượt là trung điểm của BC , CA , AB. CMR :
a) A đối xứng với H qua NP
b) MHNP là hình thang cân
2. Cho hình bình hành ABCD . Từ A kẻ AI vuông góc BD, từ C kẻ CK vuông góc BD ( I , K thuộc BD )
a) Tứ giác AICK là hình gì ?
b) Tia AI cắt CD tại M , tia CK cắt AB tại N. Tứ giác ANCM là hình gì ? Vì sao ?
c) Cminh DI = BK
d) Cminh trung điểm của MN là trung điểm của đoạn BD
Cho \(\Delta ABC\left(CA< CB\right)\).Trên tia BC lấy các điểm M và N sao cho BM=MN=NC. Qua M kẻ đường thẳng song song với AB cắt AN tại I
a) Chứng minh:I là trung điểm của AN
b) Qua K là trung điểm của AB kẻ đường thẳng vuông góc với đường phân giác \(\widehat{ACB}\)cắt đường thẳng AC tại E, đường thẳng BC tại F. Chứng minh AE=BF
Cho \(\Delta ABC\) cân tại A, đường cao AH. Trên cạnh AB lấy điểm M, trên tia đối của tia AC lấy điểm N sao cho BM = CN, MN cắt BC tại D.
a, C/minh: D là trung điểm MN.
b, Đường trung trực của đoạn thẳng MN cắt AH tại E. Biết AB = 6cm, BE = 4,5cm. Tính diện tích của tam giác ABC.
Cậu tự vẽ hình nhé
a, kẻ MK vuông BC, NG vuông BC
Tam g ABC cân => g ABC= g ACB
Lại có g ACB = g GCN (dd)
=> g GCN = g ABC=g MBK
Xét tg MBK và tg NCG
g MKB= g NGC =90°
g MBK = g NCG (cmt)
MB= CN(gt)
=> tg MBK= tg NCG ( ch-gn)
=> MK=NG (2 cạnh tương ứng)
Vì MK vuông BC, NG vuông BC => NG// MK
=> g GNM = g KMN ( so le trong )
Xét tg MKD VÀ TG NGD
g MKD = g DGN = 90°
g KMD = gDNG ( cmt)
Mk= GN (cmt)
=> tg MKD = tg NGD (_cgv-gn)
=> MD= ND (2 ctu)
=> D là td MN ( dpcm)
Xét tam giác cân ABC , AH là đường cao => AH là trung trực
Lại có E thuộc AH => EC= EB
Xét tg ABE và tg ACE
AB=AC (tg ABC cân)
BE= EC (cmt)
AE cạnh chung
=> tg ABE = tg ACE (ccc)
=> g ABE = g ACE ( 2 góc tương ứng)(1)
Lại có DE là trung trực MN => ME = NE
Xét tg MBE và tg NCE
MB = NC ( gt)
ME = NE (cmt)
BE = CE (cmt)
=> tg MBE = tg NCE (ccc)
=> g ECN = g EBM (2 góc t u ) (2)
Từ 1), 2) => g ECA = g ECN
Lại có 2 góc này bù nhau
=>g ACE= 90°= g ABE
Xét tg ABE vuông
+ theo đl pytago:
=> AE = √( ab2+bE2)= √( 62+4,52)= 7,5 (cmcm)
+ BH là đcao, theo hệ thức lượng trong tg vuông
=>+ AB2= AH.AE => AH= 62:7,5=4,8 (cmcm)
+ 1/(BH2)= 1/(AB2)+1/(BE2) => BH = √(1:( (1/62)+(1/4,52))= 3,6(ccmcm)
=> BC= 3,6.2= 7,2 (cm)
=> dt tg ABC có đcao AH là 7,2.4,8.1/2= 28,08(cm2)
Vậy S tg ABC = 28,08 cm2
cho tam giác ABC có AB=9cm, AC=15cm,BC=21cm.Trên cạnh AB lấy điểm M sao cho MA = 3cm .Từ điểm M kẻ đường thẳng song song với BC cắt AC tại N.
a, Tính độ dài các đoạn thẳng AN VÀ MN
b, Gọi I là trung điểm của MN. gọi K là giao điểm của AI và BC.Chứng minh K là trung điểm của BC.
c, Tia phân giác của góc AKB cắt cạnh AB tại E, tia phân giác của góc AKC cắt cạnh AC tại F.Chứng minh EF song song với MN.
Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân.
Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MD = MA. a/ Chứng minh : AB = CD. b/ Chứng minh: \(\Delta BAC=\Delta DAC\). c/ Chứng minh : \(\Delta ABM\) là tam giác đều.
Câu 6. Cho tam giác ABC vuông ở B, gọi M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a/ \(\Delta ABM=\Delta ECM\). b/ AC > CE. c/ góc BAM>góc MAC
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
câu 6;
Xét \(\Delta ABM\)và \(\Delta ECM\)
BM =MC ( M là trung điểm của BC)
MA =ME
\(\widehat{AMB}=\widehat{CME}\)( đối đỉnh )
=> \(\Delta ABM\)= \(\Delta ECM\)(cgc)
=> AB =CE và \(\widehat{MAB}=\widehat{MEC}\)
có AB < AC => CE < AC
Xét \(\Delta CAE\) có CA>CE => \(\widehat{CAE}>\widehat{CEA}\)
có \(\widehat{MAB}=\widehat{CEA}\)=> đpcm
Cho tam giác ABC cân tại A ( góc A <90°) vẽ tia phân giác của góc BAC cắt cạnh BC tại H
a) CM: Tam giác ABH= tam giác ACH
b) Vẽ trung tuyến BD của tam giác ABC cắt AH tại G. CM: H là trung điểm của BC. Từ đó => G là trọng tâm của tam giác ABC
c) Tính GA, biết AB=20cm, BH=16cm
d) CG cắt AB tại E. Trên tia đối của tia EC lấy điểm M sao cho ME=EC. Trên tia đối của tia BD lấy điểm N sao cho BD=DN. CM: A là trung điểm của M