cho A=\(\sqrt{3+\sqrt{5+2\sqrt{3}}}+\sqrt{3-\sqrt{5+2\sqrt{3}}}\)
chứng minh:\(A^2-2A-2=0\)
Cho \(a=\sqrt{3+\sqrt{5+2\sqrt{3}}}+\sqrt{3-\sqrt{5+2\sqrt{3}}}\).
Chứng minh: \(a^2-2a-2=0\)
\(a=\sqrt{3+\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}}+\sqrt{3-\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}}\)
\(a=\sqrt{3+\sqrt{3}+\sqrt{2}}+\sqrt{3-\sqrt{3}-\sqrt{2}}\)
\(\Rightarrow a^2=3+\sqrt{3}+\sqrt{2}+3-\sqrt{3}-\sqrt{2}+2\sqrt{\left(3+\sqrt{3}+\sqrt{2}\right)\left(3-\sqrt{3}-\sqrt{2}\right)}\)\(\Rightarrow VT=3+\sqrt{3}+\sqrt{2}+3-\sqrt{3}-\sqrt{2}+2\sqrt{\left(3+\sqrt{3}+\sqrt{2}\right)\left(3-\sqrt{3}-\sqrt{2}\right)}-2\sqrt{\left(3+\sqrt{3}+\sqrt{2}\right)\left(3-\sqrt{3}-\sqrt{2}\right)}-2\)
\(=6-2=4\) ??? đề bài có sai ko bn?
\(a^2=6+2\sqrt{9-\left(5+2\sqrt{3}\right)}=6+2\sqrt{4-2\sqrt{3}}=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\)
\(\Rightarrow a=\sqrt{3}+1\)
\(\Rightarrow a^2-2a-2=\left(a-1\right)^2-3=\left(\sqrt{3}+1-1\right)^2-3=3-3=0\)
Cho a= \(\sqrt{3\text{+}\sqrt{5\text{+}2\sqrt{3}}}\) + \(\sqrt{3-\sqrt{5\text{+}2\sqrt{3}}}\)
Chứng minh rằng a\(^2\) - 2a - 2 = 0
Lời giải:
Ta có:
$a^2=3+\sqrt{5+2\sqrt{3}}+3-\sqrt{5+2\sqrt{3}}+2\sqrt{(3+\sqrt{5+2\sqrt{3}})(3-\sqrt{5+2\sqrt{3}})}$
$=6+2\sqrt{3^2-(5+2\sqrt{3})}=6+2\sqrt{4-2\sqrt{3}}=6+2\sqrt{3+1-2\sqrt{3}}$
$=6+2\sqrt{(\sqrt{3}-1)^2}=6+2(\sqrt{3}-1)=4+2\sqrt{3}=(\sqrt{3}+1)^2$
$\Rightarrow a=\sqrt{3}+1$ (do $a\geq 0$)
Do đó:
$a^2-2a-2=4+2\sqrt{3}-2(\sqrt{3}+1)-2=0$ (đpcm)
1.Chứng minh:\(\dfrac{a+\sqrt{2+\sqrt{5}.}\sqrt{\sqrt{9-4\sqrt{5}}}}{3\sqrt{2-\sqrt{5}}.\sqrt[3]{\sqrt{9+4\sqrt{5}-}3\sqrt{a^2}+\sqrt[3]{a}}}\)=\(-\sqrt[3]{a}-1\)
2.Rút gọn: \(\left(\dfrac{a^3\sqrt[]{a}-2a^3\sqrt{b}+\sqrt[3]{a^2}-\sqrt[3]{b}}{\sqrt[3]{a^2-\sqrt[3]{ab}}}+\dfrac{\sqrt[3]{a^2b}-\sqrt[3]{ab^2}}{\sqrt[3]{a}-\sqrt[3]{b}}\right)1\dfrac{1}{\sqrt[3]{a^2}}\)
Chứng minh đẳng thức sau:
\(\frac{a+\sqrt{2+\sqrt{5}}.\sqrt{\sqrt{9-4\sqrt{5}}}}{\sqrt[3]{2-\sqrt{5}}.\sqrt[3]{\sqrt{9+4\sqrt{5}}-\sqrt[3]{a^2}}+\sqrt[3]{a}}=-\sqrt[3]{a-1}\)
Chứng minh bất đẳng thức sau:
\(\left(\sqrt[3]{\sqrt{9+4\sqrt{5}}+\sqrt[3]{2+\sqrt{5}}}\right).\sqrt[3]{\sqrt{5-2}}-2,1< 0\)
Cho \(a=\sqrt{3+\sqrt{5+2\sqrt{3}}}+\sqrt{3-\sqrt{5+2\sqrt{3}}}\)
cm: \(a^2-2a-2=0\)
ta có : \(a=\sqrt{3+\sqrt{5+2\sqrt{3}}}+\sqrt{3-\sqrt{5+2\sqrt{3}}}\)
\(\Rightarrow a^2=6+2\sqrt{4-2\sqrt{3}}=6+2\sqrt{\left(\sqrt{3}-1\right)^2}=4+2\sqrt{3}\)
\(\Rightarrow a=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\) (do \(a>0\) )
\(\Rightarrow a^2-2a-2=4+2\sqrt{3}-2\left(\sqrt{3}+1\right)-2=0\)
4. Cho a = \(\sqrt{3+\sqrt{5+2\sqrt{3}}}+\sqrt{3-\sqrt{5+2\sqrt{3}}}\)
\(a^{mr}=a^2-2a-2a=0\)
Ta có a2 = 6 + 2\(\sqrt{4-2\sqrt{3}}\)= 6 + \(2\sqrt{3}\)- 2 = 4 + 2\(\sqrt{3}\)= (\(\sqrt{3}\)+ 1)2
=> a = \(1+\sqrt{3}\)
Từ đó => a2- 2a - 2 = 0
Cái đề bạn bị sai rồi nhé
Cho a,b,c>0; có a+b+c\(\le\)3.
Chứng minh rằng:
\(\frac{a}{\sqrt{2a^2+b^2}+\sqrt{3}}+\frac{b}{\sqrt{2b^2+c^2}+\sqrt{3}}+\frac{c}{\sqrt{2c^2+a^2}+\sqrt{3}}\le\frac{\sqrt{3}}{2}\)
cho a,b,c >0 và a+b+c=3 .chứng minh \(\dfrac{1}{\sqrt{2a^2+1}}+\dfrac{1}{\sqrt{2b^2+1}}+\dfrac{1}{\sqrt{2c^2+1}}\ge\sqrt{3}\)
Chứng minh:
\(\dfrac{a+\sqrt{2+\sqrt{5}}.\sqrt{\sqrt{9-4\sqrt{5}}}}{\sqrt[3]{2-\sqrt{5}}.\sqrt[3]{\sqrt{9+4\sqrt{5}}}-\sqrt[3]{a^2}+\sqrt[3]{a}}=-\sqrt[3]{a}-1\)