Cho a,b,c là các số dương. CMR
\(\dfrac{a}{\sqrt{2b^2+2c^2-a^2}}+\dfrac{b}{\sqrt{2c^2+2a^2-b^2}}+\dfrac{c}{\sqrt{2a^2+2b^2-c^2}}\ge\sqrt{3}\)
cho 3 số thực dương a,b,c thỏa mãn \(\dfrac{a}{1+a}+\dfrac{b}{1+b}+\dfrac{c}{1+c}=2\) .Chứng minh:
\(\dfrac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{2}\ge\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}+\dfrac{1}{\sqrt{c}}\)
Cho a b c>0 tm a+b+c=3
Chứng minh \(\dfrac{a^2}{2a+1}+\dfrac{b^2}{2b+1}+\dfrac{c^2}{2c+1}\le\dfrac{a^2+b^2+c^2}{\sqrt{a^2+b^2+c^2+6}}\)
Cho a,b,c > 0 và ab + bc + ca = 1. Tìm Min
\(p=\dfrac{2a}{\sqrt{1+a^2}}+\dfrac{2b}{\sqrt{1+b^2}}+\dfrac{2c}{\sqrt{1+c^2}}\)
cho \(7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=6\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)+2017\)
tìm max \(\dfrac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\dfrac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\dfrac{1}{\sqrt{3\left(2c^2+a^2\right)}}\)
Cho a,b, c là 3 số thực dương . CMR
\(\dfrac{1}{a\sqrt{3a+2b}}\)+ \(\dfrac{1}{b\sqrt{3b+2c}}\) + \(\dfrac{1}{c\sqrt{3c+2a}}\)\(\ge\)\(\dfrac{3}{\sqrt{5abc}}\)
Cho a,b,c Là 3 cạnh tam giác . Chứng minh rằng
\(\dfrac{1}{\sqrt{ab+bc}}+\dfrac{1}{\sqrt{bc+ca}}+\dfrac{1}{\sqrt{ca+ab}}\ge\dfrac{1}{\sqrt{a^2+bc}}+\dfrac{1}{\sqrt{b^2+ac}}+\dfrac{1}{\sqrt{c^2+ab}}\)
Cho a,b,c > 0 có a+b+c \(\le3\)
CMR : \(\dfrac{a}{\sqrt{2a^2+b^2}+\sqrt{3}}+\dfrac{b}{\sqrt{2b^2+c^2}\sqrt{3}}+\dfrac{c}{\sqrt{2c^2+a^2}+\sqrt{3}}\le\dfrac{\sqrt{3}}{2}\)
cho a,b,c>0 thỏa mãn: \(a+b+c=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}\)
chứng minh: \(3\left(a+b+c\right)\ge\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\)