Bạn tham khảo lời giải tại đây:
Câu hỏi của Phác Chí Mẫn - Toán lớp 9 | Học trực tuyến
Bạn tham khảo lời giải tại đây:
Câu hỏi của Phác Chí Mẫn - Toán lớp 9 | Học trực tuyến
Cho các số thực dương a,b,c bất kì.Chứng minh rằng:
\(\frac{1}{a\sqrt{3a+2b}}+\frac{1}{b\sqrt{3b+2c}}+\frac{1}{c\sqrt{3c+2a}}\ge\frac{3}{\sqrt{5abc}}\)
Cho a, b, c dương. Chứng minh: \(\frac{1}{a\sqrt{3a+2b}}+\frac{1}{b\sqrt{3b+2c}}+\frac{1}{c\sqrt{3c+2a}}\ge\frac{3}{\sqrt{5abc}}\)
Cho a,b,c là các số dương. CMR
\(\dfrac{a}{\sqrt{2b^2+2c^2-a^2}}+\dfrac{b}{\sqrt{2c^2+2a^2-b^2}}+\dfrac{c}{\sqrt{2a^2+2b^2-c^2}}\ge\sqrt{3}\)
Cho a, b,c dương. cmr: \(\dfrac{a^3}{2b+3c}+\dfrac{b^3}{2c+3a}+\dfrac{c^3}{2a+3b}\ge\dfrac{1}{5}\left(a^2+b^2+c^2\right)\)
cho a,b,c >0 và a+b+c=3 .chứng minh \(\dfrac{1}{\sqrt{2a^2+1}}+\dfrac{1}{\sqrt{2b^2+1}}+\dfrac{1}{\sqrt{2c^2+1}}\ge\sqrt{3}\)
Với a, b, c là những số thực dương, chứng minh rằng: \(\dfrac{a^2}{\sqrt{3a^2+8b^2+14ab}}+\dfrac{b^2}{\sqrt{3b^2+8c^2+14bc}}+\dfrac{c^2}{\sqrt{3c^2+8a^2+14ca}}\ge\dfrac{a+b+c}{5}\)
Cho a, b, c dương. Chứng minh: \(\frac{1}{a\sqrt{3a+2b}}+\frac{1}{b\sqrt{3b+2c}}+\frac{1}{c\sqrt{3c+2a}}\ge\frac{3}{\sqrt{5abc}}\)
Ai đó xóa câu hỏi của em rồi @Akai Haruma
cho a,b,c \(\ge0\) tm abc=1
cmr \(\dfrac{1}{2a^3+3a+2}+\dfrac{1}{2b^3+3b+2}+\dfrac{1}{2c^3+3c+2}\ge\dfrac{3}{7}\)
cho 3 số thực dương a,b,c thỏa mãn \(\dfrac{a}{1+a}+\dfrac{b}{1+b}+\dfrac{c}{1+c}=2\) .Chứng minh:
\(\dfrac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{2}\ge\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}+\dfrac{1}{\sqrt{c}}\)