A = ( 5x - 1 )2 + 12 đạt giá trị nhỏ nhất khi x bằng
-5x^2-4x+1 đạt giá trị lớn nhất khi x bằng
với x > 1 biểu thức \(A=5x+\frac{180}{x-1}\)
đạt giá trị nhỏ nhất khi x bằng bao nhiêu?
\(A=5x+\frac{180}{x-1}=5\left(x-1\right)+\frac{180}{x-1}+5\ge2\sqrt{5\left(x-1\right).\frac{180}{x-1}}+5\)
Gọi a là số các giá trị nguyên của x để hàm số y=|x-4|+|12-x| đạt giá trị nhỏ nhất. Khi đó a = Câu 10:Gọi a là số các giá trị nguyên của x để hàm số đạt giá trị nhỏ nhất. Khi đó a =
Gọi a là số các giá trị nguyên của x để hàm số y=|x-4|+|12-x| đạt giá trị nhỏ nhất. Khi đó a = Câu 10:Gọi a là số các giá trị nguyên của x để hàm số đạt giá trị nhỏ nhất. Khi đó a =
Hàm số f x = x - 1 2 + x - 2 2 + . . . + x - n 2 đạt giá trị nhỏ nhất khi x bằng
A. n + 1 2
B. n 2
C. n ( n + 1 ) 2
D. n - 1 2
Chọn A.
Ta viết lại hàm số đã cho thành
Đẳng thức xảy ra khi và chỉ khi n + 1 2
với x > 1, biểu thức \(A=5x+\frac{180}{x-1}\)đạt giá trị nhỏ nhất khi x = ....?
\(A=5\left(x-1\right)+\frac{180}{x-1}+5\ge2\sqrt{5\left(x-1\right).\frac{180}{x-1}}+5=60+5=65\)
cho A=\(\sqrt{x^2+2x+1}+\sqrt{x^2-2x+1}\)
tìm giá trị nhỏ nhất của A, giá trị đó đạt được khi x bằng bao nhiêu?
\(A=\sqrt{x^2+2x+1}+\sqrt{x^2-2x+1}\)
\(=\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-1\right)^2}\)
-Nêú \(x\ge1\)thì \(\sqrt{\left(x+1\right)^2}=x+1\)và\(\sqrt{\left(x-1\right)^2}=x-1\)
Ta có:\(A=x+1+x-1=2x\ge2\)
Dấu "=" xảy ra khi x=1
-Nếu\(1>x\ge-1\)thì \(\sqrt{\left(x+1\right)^2}=x+1\)và\(\sqrt{\left(x-1\right)^2}=1-x\)
Ta có:\(A=x+1+1-x=2\)
-Nếu x<-1 thì \(\sqrt{\left(x+1\right)^2}=-x-1\)và\(\sqrt{\left(x-1\right)^2}=1-x\)
Ta có:\(A=-x-1+1-x=-2x\ge2\)
Dấu "=" xảy ra khi x=-1
Vậy GTNN của A là 2 tại x=1 hoặc x=-1
\(A=\sqrt{x^2+2x+1}+\sqrt{x^2-2x+1}\)
Tìm giá trị nhỏ nhất của A, giá trị đó đạt được khi x bằng bao nhiêu?
Ta có x – 2√x + 3 = (√x – 1)2 + 2. Mà (√x – 1)2 ≥ 0 với mọi x ≥ 0 ⇒ (√x – 1)2 + 2 ≥ 2 với mọi x ≥ 0
⇒ \(A=\frac{1}{\left(\sqrt{X}-1\right)^2+2}\le\frac{1}{2}\)
Vậy GTLN của A = 1/2 ⇔ √x = 1 ⇔ x =1
Gọi a là số các giá trị nguyên của x để hàm số y=/x-4/+/12-x/ đạt giá trị nhỏ nhất. Khi đó a =