\(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\)
a) \(\left(\dfrac{1}{\sqrt{x}}-\dfrac{1}{x}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
b) \(\left(\dfrac{\sqrt{a}-1}{\sqrt{a}+1}-\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\right).\left(\sqrt{a}-\dfrac{1}{a}\right)\)
\(\left[\dfrac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right).\left(\sqrt{a}-1\right)}-\dfrac{a\sqrt{a}}{a-1}\right].\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{1}{\sqrt{a}-1}\right)\)
ĐKXĐ: \(\left\{{}\begin{matrix}a>=0\\a< >1\end{matrix}\right.\)
\(\left(\dfrac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\dfrac{a\sqrt{a}}{a-1}\right)\cdot\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{1}{\sqrt{a}-1}\right)\)
\(=\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}-\dfrac{a\sqrt{a}}{a-1}\right)\cdot\dfrac{\sqrt{a}-1+\sqrt{a}+1}{a-1}\)
\(=\dfrac{\left(\sqrt{a}+1\right)^2-a\sqrt{a}}{a-1}\cdot\dfrac{2\sqrt{a}}{a-1}\)
\(=\dfrac{2\sqrt{a}\left(a+2\sqrt{a}+1-a\sqrt{a}\right)}{\left(a-1\right)^2}\)
rút gọn biểu thức
\(\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)
\(\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}-\dfrac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\left(\sqrt{a}+\dfrac{1}{\sqrt{a}}\right)\)
Bài đầu : \(\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)
\(=\left(1+\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(1-\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1-a\)
b: \(=\dfrac{a+2\sqrt{a}+1-a+2\sqrt{a}-1+4\sqrt{a}\left(a-1\right)}{a-1}\cdot\dfrac{a+1}{\sqrt{a}}\)
\(=\dfrac{4\sqrt{a}+4a\sqrt{a}-4\sqrt{a}}{a-1}\cdot\dfrac{a+1}{\sqrt{a}}\)
\(=\dfrac{4a\sqrt{a}\left(a+1\right)}{\left(a-1\right)\cdot\sqrt{a}}=\dfrac{4a\left(a+1\right)}{a-1}\)
A= \(\left(\dfrac{a-1}{\sqrt{a}-1}-2\right)\left(\dfrac{a-\sqrt{a}}{\sqrt{a}-1}+1\right)\) ĐK: (a≥0, a≠1)
B= \(\left(\dfrac{a\sqrt{a}-a}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\dfrac{a+2}{a-2}\) ĐK: (a>0, a≠0, a≠2)
C= \(\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{a}{a-1}\right):\left(\sqrt{a}-\dfrac{\sqrt{a}}{\sqrt{a}+1}\right)\) ĐK: (a>0, a≠1)
D= \(\dfrac{a+\sqrt{a}}{\sqrt{a}}+\dfrac{a+4}{\sqrt{a}+2}\) ĐK: (a>0)
E= \(\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\left(\dfrac{\sqrt{a}-1}{\sqrt{a}}+\dfrac{1-\sqrt{a}}{a+\sqrt{a}}\right)\) ĐK: (a>0, a≠1)
A = \(\left(\dfrac{a-1}{\sqrt{a}-1}-2\right)\left(\dfrac{a-\sqrt{a}}{\sqrt{a}-1}+1\right)=\left(\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}-1}-2\right)\left(\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}+1\right)=\left(\sqrt{a}+1-2\right)\left(\sqrt{a}+1\right)=\left(\sqrt{a}-1\right)\left(\sqrt{a}-1\right)=a-1\)
\(B=\left(\dfrac{a\sqrt{a}-a}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\dfrac{a+2}{a-2}=\left(\dfrac{a\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}\right)\cdot\dfrac{a-2}{a+2}=\left(\dfrac{a}{\sqrt{a}}-\dfrac{a-\sqrt{a}+1}{\sqrt{a}}\right)\cdot\dfrac{a-2}{a+2}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\cdot\dfrac{a-2}{a+2}=\dfrac{\left(\sqrt{a}-1\right)\left(a-2\right)}{\sqrt{a}\left(a+2\right)}\)
\(C=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{a}{a-1}\right):\left(\sqrt{a}-\dfrac{\sqrt{a}}{\sqrt{a}+1}\right)=\left(\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{a-1}-\dfrac{a}{a-1}\right):\left(\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)-\sqrt{a}}{\sqrt{a}+1}\right)=\dfrac{\sqrt{a}}{a-1}:\dfrac{a}{\sqrt{a}+1}=\dfrac{\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\cdot\dfrac{\sqrt{a}+1}{a}=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\)
\(D=\dfrac{a+\sqrt{a}}{\sqrt{a}}+\dfrac{a+4}{\sqrt{a}+2}=\sqrt{a}+1+\dfrac{a+4}{\sqrt{a}+2}=\dfrac{\sqrt{a}\left(\sqrt{a}+2\right)+\sqrt{a}+2+a+4}{\sqrt{a}+2}=\dfrac{a+2\sqrt{a}+\sqrt{a}+2+a+4}{\sqrt{a}+2}=\dfrac{2a+3\sqrt{a}+6}{\sqrt{a}+2}\)
\(E=\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\left(\dfrac{\sqrt{a}-1}{\sqrt{a}}+\dfrac{1-\sqrt{a}}{a+\sqrt{a}}\right)=\dfrac{a-1}{\sqrt{a}}\cdot\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)+1-\sqrt{a}}{\sqrt{a}\left(\sqrt{a}+1\right)}=\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}}\cdot\dfrac{a-1+1-\sqrt{a}}{\sqrt{a}\left(\sqrt{a}+1\right)}=\dfrac{\left(\sqrt{a}-1\right)\cdot\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}\cdot\sqrt{a}}=\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}}\)
Cho \(P=\dfrac{\sqrt{a}\left(1-a\right)^2}{1+a}:\left[\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\right]\)
Tìm a để 4P đạt giá trị nguyên
1. Cho biểu thức: A=\(\left[\dfrac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\dfrac{a+\sqrt{a}}{a-1}\right]:\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{1}{\sqrt{a}-1}\right)\)
Rút gọn biểu thức trên
A=\(\left[\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}+1\right)}{\left(a-1\right)\left(\sqrt{a}+2\right)}-\dfrac{\left(a+\sqrt{a}\right)}{\left(a-1\right)}\right]\)::::::::\(\left(\dfrac{\left(\sqrt{a}-1+\sqrt{a}+1\right)}{a-1}\right)\)
=\(\left[\dfrac{1}{\sqrt{a}-1}\right]:\left(\dfrac{2\sqrt{a}}{a-1}\right)\)=\(\dfrac{\sqrt{a}-1}{2\sqrt{a}}\)
=\(\dfrac{a^2+a\sqrt{a}+11a+6}{2\sqrt{a}\left(\sqrt{a}+2\right)}\)
Ta có: \(A=\left(\dfrac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\dfrac{a+\sqrt{a}}{a-1}\right):\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{1}{\sqrt{a}-1}\right)\)
\(=\dfrac{\sqrt{a}+1-\sqrt{a}}{\sqrt{a}-1}:\dfrac{\sqrt{a}-1+\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{1}{\sqrt{a}-1}\cdot\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{2\sqrt{a}}\)
\(=\dfrac{\sqrt{a}+1}{2\sqrt{a}}\)
Rút gọn biểu thức:
\(\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}+\left[\sqrt{a}-\dfrac{1}{\sqrt{a}}\right]\left[\dfrac{\sqrt{a}+1}{\sqrt{a}-1}+\dfrac{\sqrt{a}-1}{\sqrt{a}+1}\right]\)
Ta có: \(\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}+\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}+\dfrac{\sqrt{a}-1}{\sqrt{a}+1}\right)\)
\(=\dfrac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}+\dfrac{a-1}{\sqrt{a}}\cdot\dfrac{a+2\sqrt{a}+1+a-2\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)
\(=2+\dfrac{2a+2}{\sqrt{a}}\)
\(=\dfrac{2a+2\sqrt{a}+2}{\sqrt{a}}\)
\(\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)\left(\dfrac{a\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)
Ta có: \(\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)\left(\dfrac{a\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)
\(=\dfrac{a-1}{2\sqrt{a}}\cdot\dfrac{a\sqrt{a}\left(\sqrt{a}-1\right)-\sqrt{a}\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(=\dfrac{\sqrt{a}\left[a\left(\sqrt{a}-1\right)-\left(\sqrt{a}+1\right)^2\right]}{2\sqrt{a}}\)
\(=\dfrac{a\sqrt{a}-a-a-2\sqrt{a}-1}{2}\)
\(=\dfrac{-2a+a\sqrt{a}-2\sqrt{a}-1}{2}\)
\(\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)\left(\dfrac{a\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)
\(=\left(\dfrac{a-1}{2\sqrt{a}}\right)\left(\dfrac{a^2-a\sqrt{a}-a\sqrt{a}-a-a-\sqrt{a}}{a-1}\right)\)
\(=\dfrac{a^2-3a\sqrt{a}-2a}{2\sqrt{a}}\)
\(\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}-\dfrac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\)
câu1 : a) A= \(\dfrac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}-\dfrac{1}{2-\sqrt{3}}\)
b) \(\left(\dfrac{\sqrt{a}-2}{\sqrt{a}+2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-2}\right).\left(\sqrt{a}-\dfrac{4}{\sqrt{a}}\right)\)
Câu 2 :
a) A= \(\left(2\sqrt{4+\sqrt{6-2\sqrt{5}}}\right).\left(\sqrt{10}-\sqrt{2}\right)\)
b) B= \(\left(\dfrac{\sqrt{a}-1}{\sqrt{a}+1}+\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\right).\left(1-\dfrac{2}{a+1}\right)^2\)
Câu 2:
a: \(=2\left(\sqrt{4+\sqrt{5}-1}\right)\left(\sqrt{10}-\sqrt{2}\right)\)
\(=\sqrt{2}\cdot\sqrt{6+2\sqrt{5}}\cdot\left(\sqrt{10}-\sqrt{2}\right)\)
\(=2\cdot\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)=8\)
b: \(=\dfrac{a-2\sqrt{a}+1+a+2\sqrt{a}+1}{a-1}\cdot\left(\dfrac{a+1-2}{a+1}\right)^2\)
\(=\dfrac{2\left(a+1\right)}{a-1}\cdot\dfrac{\left(a-1\right)^2}{\left(a+1\right)^2}=\dfrac{2\left(a-1\right)}{a+1}\)
P = \(\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)^2.\left(\dfrac{\sqrt{a}-1}{\sqrt{a}+1}-\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)
\(P=\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)^2.\left(\dfrac{\sqrt{a}-1}{\sqrt{a}+1}-\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)
\(=\left(\dfrac{a-1}{2\sqrt{a}}\right)^2.\left(\dfrac{\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)
\(=\dfrac{\left(a-1\right)^2}{4a}.\dfrac{-4\sqrt{a}}{a-1}=\dfrac{1-a}{\sqrt{a}}\)
Ta có: \(P=\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)^2\cdot\left(\dfrac{\sqrt{a}-1}{\sqrt{a}+1}-\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)
\(=\dfrac{\left(\sqrt{a}-1\right)^2\cdot\left(\sqrt{a}+1\right)^2}{4a}\cdot\dfrac{a-2\sqrt{a}+1-a-2\sqrt{a}-1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{a-1}{4a}\cdot\dfrac{-4\sqrt{a}}{1}\)
\(=\dfrac{-a+1}{\sqrt{a}}\)