Bài 1: Cho hai đa thức A= 3x5 - 7x2y3 +15x2y ; B= 5x2y - 15xy2 + x5 +8
a) Tính giá trị của mỗi đa thức A,B tại x= -1 , y= 0
b) Tính A+B , A-B
Giúp mik với mik sắp thi rồi
cho hai đa thức : A=15x2y - 7xy2-6y3 ; B = 2x3 - 12x2y + 7xy2
a, tính A+B và A-B
b, tính giá trị của đa thức A+B , A-B với x=1,y=3
a) \(A+B=15x^2y-7xy^2-6y^3+2x^3-12x^2y+7xy^2=2x^3+3x^2y-6y^3\)
\(A-B=15x^2y-7xy^2-6y^3-2x^3+12x^2y-7xy^2=-2x^3-6y^3+27x^2y-14xy^2\)
A+B = \(13x^2y-6y^3+2x^3\)
A-B = \(27x^2y-6y^3-2x^3\)
\(A+B=13x^2y-6y^3+2x^3\) tại x=1 ,y=3
\(A+B=13.1^2\)\(.3\) - \(6.3^3\)+\(2.1^3\)
A+B = 13.1.3 - 6.27 + 2.1
A+B = 39 - 162 + 2
A+B= -128
A-B = \(27.1^2.3-6.3^3-2.1^3\)
A-B = 27.1.3 - 6.27-2.1
A-B = 81 - 162 - 2
A-B = -83
a) A+B = 13x2y−6y3+2x313x2y−6y3+2x3
A-B = 27x2y−6y3−2x327x2y−6y3−2x3
b) A+B=13x2y−6y3+2x3A+B=13x2y−6y3+2x3 tại x=1 ,y=3
A+B=13.12A+B=13.12.3.3 - 6.336.33+2.132.13
A+B = 13.1.3 - 6.27 + 2.1
A+B = 39 - 162 + 2
A+B= -128
A-B = 27.12.3−6.33−2.1327.12.3−6.33−2.13
A-B = 27.1.3 - 6.27-2.1
A-B = 81 - 162 - 2
A-B = -83
Bài 4 Cho hai đa thức: P(x) = 8x5 + 7x - 6x2 - 3x5 + 2x2 + 1
Q(x) = 4x5 + 3x - 2x2 + x5 - 2x2 + 8
a/ Thu gọn và sắp xếp hai đa thức trên theo lũy thừa giảm dần của biến ?
b/Tính P(x) + Q(x) c/ Tìm x để P(x) =Q(x) ?
a, \(P\left(x\right)=5x^5-4x^2+7x+1;Q\left(x\right)=5x^5-4x^2+3x+8\)
b, \(P\left(x\right)+Q\left(x\right)=10x^5-8x^2+10x+9\)
c, \(P\left(x\right)=Q\left(x\right)\Rightarrow7x+1=3x+8\Leftrightarrow4x=7\Leftrightarrow x=\dfrac{7}{4}\)
a/ \(P\left(x\right)=8x^5+7x-6x^2-3x^5+2x^2+1\)
\(=8x^5-3x^5-6x^2+2x^2+7x+1\)
\(=5x^5-4x^2+7x+1\)
\(Q\left(x\right)=4x^5+3x-2x^2+x^5-2x^2+8\)
\(=4x^5+x^5-2x^2-2x^2+3x+8\)
\(=5x^5-4x^2+3x+8\)
b/ \(P\left(x\right)=5x^5-4x^2+7x+1\)
+ \(Q\left(x\right)=5x^5-4x^2+3x+8\)
____________________________
\(P\left(x\right)+Q\left(x\right)=10x^5-8x^2+10x+9\)
c/ \(P\left(x\right)=Q\left(x\right)\)
\(\Rightarrow5x^5-4x^2+7x+1=5x^5-4x^2+3x+8\)
\(\Rightarrow7x+1=3x+8\)
\(\Rightarrow4x-7=0\)
\(\Rightarrow x=\dfrac{7}{4}\)
Tìm đa thức K biết: ( 5x2 - 7x2y3 + 3y4 ) - K = 3x2 - 7x2y3 - 3y4
\(K=5x^2-7x^2y^3+3y^4-3x^2+7x^2y^3+3y^4=2x^2+6y^4\)
\(\Rightarrow K=5x^2-7x^2y^3+3y^4-3x^2+7x^2y^3+3y^4\)
\(\Rightarrow K=2x^2+6y^4\)
bài 1: Thực hiện phép tính
a/ (4x-3) (2x+5)
B/ (14X5y - 7x2y3 + 3X4y) :7x2y
c/ (2x3-3x2-11x +6):(x-3)
bài 2: Phân thức đa thức thành nhân tử
a/ x3-25x
b/ x2-2xy+3x-6y
c/ 8x3+4x2-6x-27
Bài 2:
a: =x(x^2-25)
=x(x-5)(x+5)
b: =x(x-2y)+3(x-2y)
=(x-2y)(x+3)
c: =(2x-3)(4x^2+6x+9)+2x(2x-3)
=(2x-3)(4x^2+8x+9)
Tìm đa thức K biết: ( 5x2 - 7x2y3 + 3y4 ) - K = 3x2 - 7x2y3 - 3y4
3x^2-8x+5-k=-2k+4x-6+x^2
\(\left(5x^2-7x^2y^3+3y^4\right)-K=3x^2-7x^2y^3-3y^4\)
\(\Rightarrow K=\left(5x^2-7x^2y^3+3y^4\right)-\left(3x^2-7x^2y^3-3y^4\right)\)
\(\Rightarrow K=5x^2-7x^2y^3+3y^4-3x^2+7x^2y^3+3y^4\)
\(\Rightarrow K=2x^2+6y^4\)
________________
\(3x^2-8x+5-K=-2K+4x-6+x^2\)
\(\Rightarrow-K+2K=\left(4x-6+x^2\right)-\left(3x^2-8x+5\right)\)
\(\Rightarrow K=4x-6+x^2-3x^2+8x-5\)
\(\Rightarrow K=-2x^2+12x-11\)
Cho hai đa thức
P ( x ) = - 5 x 3 - 2 x + 4 x 4 + 3 + 3 x 2 - 4 x 4 + 10 x 3 - 8 , Q ( x ) = 6 x 2 + 5 x 3 - 3 x 5 + 4 + 8 x - 4 x 2 + 3 x 5 - 10 x
d. Tính giá trị của đa thức A ( x ) = M ( x ) + 2 N ( x ) khi x = 1
d. A(x) = M(x) + 2N(x)
= 10x3 + 5x2 - 4x - 1 + 2(x2 - 9)
= 10x3 + 7x2 - 4x - 19 (0.5 điểm)
Thay x = 1 vào biểu thức ta có: A(1) = -6 (0.5 điểm)
Điền đa thức thích hợp vào chỗ (...) trong đẳng thức sau:
11x2y – ( ………………....) = 15x2y + 1
gọi đa thức cần diền vào chỗ (...) là a
`=>11x^2y-a=15x^2y+1`
`=>a=11x^2y-15x^2y-1`
`=>a=-1-4x^2y`
Vậy đa thức cần điền là `-1-4x^2`y
Cho đa thức A = 5 x2y + xy – xy2 - x2y + 2xy + x2y + xy + 6. Thu gọn rồi xác định bậc của đa thức.
a/ Tìm đa thức B sao cho A + B = 0
b/ Tìm đa thức C sao cho A + C = -2xy + 1
Bài 6: Cho đa thức F(x) = 2x3 – x5 + 3x4 + x2 - x3 + 3x5 – 2x2 - x4 + 1
\(A=5x^2y-xy^2+4xy+6\) bậc : 3
a)\(B=-5x^2y+xy^2-4xy-6\)
b)\(=>C=-2xy+1-5x^2y+xy^2-4xy-6\)
\(C=-5x^2y+xy^2-6xy-5\)
Bài 1: Cho hai đa thức
M (x) = -5x4 + 3x5 + x (x2 + 5) +14x4 - 6x5 - x3 + x -1
N(x) = x4x - 5 - 3x3 + 3x + 2x5 - 4x4 + 3x3 - 5
a) Thu gọn và sắp xếp 2 đa thức trên theo lũy thừa giảm dần của biển
b) Tính H (x) = M (x) + N (x);G(x) = M (x) - N (x)
c) Tìm hệ số cao nhất và hệ số tự do của H(x) và G(x)
d) Tìm nghiệm đa thức H(x). Tính H(1), H(-1) , G(1) , G(0)
\(\cdot\) `\text {dnammv}`
`7,`
`a,`
`M(x)=\(-5x^4+3x^5+x\left(x^2+5\right)+14x^4-6x^5-x^3+x-1\)
`M(x)=-5x^4+3x^5+x^3+5x+14x^4-6x^5-x^3+x-1`
`=(3x^5-6x^5)+(-5x^4+14x^4)+(x^3-x^3)+(5x+x)-1`
`=-3x^5+9x^4+6x-1`
`N(x)=x^4(x - 5) - 3x^3 + 3x + 2x^5 - 4x^4 + 3x^3 - 5`
`= x^5-5x^4-3x^3+3x+2x^5-4x^4+3x^3-5`
`= 3x^5-9x^4+3x-5`
`b,`
`H(x)= N(x)+ M(x)`
`-> H(x)=(-3x^5+9x^4+6x-1)+(3x^5-9x^4+3x-5)`
`= -3x^5+9x^4+6x-1+3x^5-9x^4+3x-5`
`= (-3x^5+3x^5)+(9x^4-9x^4)+(6x+3x)+(-1-5)`
`= 9x-6`
`G(x)=M(x)-N(x)`
`-> G(x)= (-3x^5+9x^4+6x-1)-(3x^5-9x^4+3x-5)`
`= -3x^5+9x^4+6x-1-3x^5+9x^4-3x+5`
`= (-3x^5-3x^5)+(9x^4+9x^4)+(6x-3x)+(-1+5)`
`= -6x^5+18x^4+3x+4`
`c,`
`H(x)=9x-6`
Hệ số cao nhất: `9`
Hệ số tự do: `-6`
`G(x)= -6x^5+18x^4+3x+4`
Hệ số cao nhất: `-6`
Hệ số tự do: `4`
`d,`
`H(1)=9*1-6=9-6=3`
`H(-1)=9*(-1)-6=-9-6=-15`
`G(1)=-6*1^5+18*1^4+3*1+4=-6+18+3+4=12+3+4=15+4=19`
`G(0)=-6*0^5+18*0^4+3*0+4=0+0+0+4=4`
`H(x)=9x-6=0`
`-> 9x=0+6`
`-> 9x=6`
`-> x= 6 \div 9`
`-> x=`\(\dfrac{2}{3}\)
Vậy, nghiệm của đa thức là `x=`\(\dfrac{2}{3}\)