Cho dãy số (Un) có \(U_n=4^n+3\), có bao nhiêu số hạng của dãy nhỏ hơn 10000 và có tận cùng bằng 9
Cho dãy số (Un) có công thức tổng quát \(u_n=6^n+1\), có bao nhiêu số hạng trong dãy thỏa mãn 69000<Un<960000 và có tận cùng bằng 7
Để \(u_n\) có tận cùng là 7 thì \(6^n+1\) có tận cùng là 7
=>\(6^n\) có chữ số tận cùng là 6
=>\(n\in Z^+\)
\(69000< U_n< 960000\)
=>\(69000< 6^n+1< 960000\)
=>\(68999< 6^n< 959999\)
=>\(log_668999< n< log_6959999\)
=>\(6,22< n< 7,68\)
mà n là số tự nhiên
nên n=7
=>Có 1 số hạng duy nhất thỏa mãn
(Giải thích chi tiết dùm mình nha!!!)
Cho dãy số (Un) xác định bởi: \(u_n=n^2-10n+10\). Có bao nhiêu số hạng của dãy cùng bằng 1?
A.1
B.2
C.3
D.4
\(u_n=1\)
=>\(n^2-10n+10=1\)
=>\(n^2-10n+9=0\)
=>(n-1)(n-9)=0
=>\(\left[{}\begin{matrix}n-1=0\\n-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=1\\n=9\end{matrix}\right.\)
Vậy: Có 2 giá trị của dãy (Un) cùng bằng 1
=>Chọn B
(Giải thích chi tiết dùm mình nha!!!)
Cho dãy số (Un) xác định bởi: \(U_n=n^2-10n+10\). Có bao nhiêu số hạng của dãy cùng bằng 1?
A.1
B.2
C.3
D.4
un=1
=>n^2-10n+9=0
=>(n-1)(n-9)=0
=>n=1 hoặc n=9
=>Chọn B
un =1
=> n^2 -10n+9=0
=>(n=1)(n-9)=0
=>n=1 hoặc n=9
=>chọn B
Cho dãy số (Un) có Un=5n+2, trong các số hạng \(u_{10},u_{11},...,u_{2023}\) của dãy, có bao nhiêu số hạng có tận cùng bằng 7
\(U_n\) có chữ số tận cùng là 7
=>\(5n+2\) có chữ số tận cùng là 7
=>5n có chữ số tận cùng là 5
=>n lẻ
Số lượng số lẻ trong dãy số từ 10;11;...;2023 là:
\(\dfrac{\left(2023-11\right)}{2}+1=1007\left(số\right)\)
=>Trong dãy này có 1007 số hạng có tận cùng là 7
Cho dãy số (Un) có Un=5n+2. Có bao nhiêu số hạng của dãy thỏa mãn 960<Un<6900 đồng thời có chữ số tận cùng bằng 2
Để \(U_n\) có chữ số tận cùng là 2 thì \(5n+2\) có chữ số tận cùng là 2
=>5n có chữ số tận cùng là 0
=>n chẵn
=>\(U_n=5n⋮10\)
Số lượng số hạng \(U_n\) chia hết cho 10 khi \(960< U_n< 6900\) là:
\(\dfrac{\left(6900-960\right)}{10}+1-2=595-2=593\left(số\right)\)
Cho dãy số (Un) với \(u_n=\dfrac{n+4}{n+1}\). Dãy số này có bao nhiêu số hạng nguyên.
A.3
B.2
C.1
D.4
\(u_n\in Z\Leftrightarrow n+4⋮n+1\)
=>n+1+3 chia hết cho n+1
=>n+1 thuộc Ư(3)
mà n+1>1 với n>0
nên n+1=3
=>n=2
=>Chọn C
\(u_n=\dfrac{n+4}{n+1}\in Z\)
\(\Leftrightarrow n+4⋮n+1\)
\(\Leftrightarrow n+4-\left(n+1\right)⋮n+1\)
\(\Leftrightarrow n+4-n-1⋮n+1\)
\(\Leftrightarrow3⋮n+1\)
\(\Leftrightarrow n+1\in U\left(3\right)=\left\{-1;1;-3;3\right\}\)
\(\Leftrightarrow n+1\in\left\{-2;0;-4;2\right\}\)
\(\Rightarrow\left(u_n\right)\)có 4 số hạng nguyên \(\rightarrow Chọn\) \(D\)
Cho dãy số (Un) có \(U_n=n^2+1\) . Hỏi dãy có tất cả bao nhiêu số hạng là số chính phương
Cho dãy số (Un) được xác định bởi \(u_n=\dfrac{n^2+3n+7}{n+1}\). Dãy số có bao nhiêu số hạng nhận giá trị nguyên
Để \(u_n\) nguyên thì \(n^2+3n+7⋮n+1\)
=>\(n^2+n+2n+2+5⋮n+1\)
=>\(5⋮n+1\)
=>\(n+1\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{0;-2;4;-6\right\}\)
Vậy: \(u_n\) có 4 số hạng nhận giá trị nguyên
(Giải thích chi tiết dùm mình nha!!!)
Cho dãy số (Un) xác định bởi: . Có bao nhiêu số hạng của dãy cùng bằng 1?
A.1
B.2
C.3
D.4
un=1
=>n^2-10n+9=0
=>(n-1)(n-9)=0
=>n=1 hoặc n=9
=>Chọn B