cho 2 đa thức
f(x)=3x2-x+1
g(x)=2x2-3x-6
tìm nghiệm của f(x)-g(x)
giúp mình , mai mình nộp bài oy
cho 2 đa thức
f(x)=3x2-x+1
g(x)=2x2-3x-7
tìm nghiệm của f(x)-g(x)
giúp mình , mai mình nộp bài oy
Ta có : f(x) - g(x) = (3x2 - x + 1) - (2x2 - 3x - 7)
=> f(x) - g(x) = 3x2 - x + 1 - 2x2 + 3x + 7
=> f(x) - g(x) = x2 + 2x + 1 + 7
=> f(x) - g(x) = (x + 1)2 + 7
Mà ; (x + 1)2 \(\ge0\forall x\)
Nên : f(x) - g(x) = (x + 1)2 + 7 \(\ge7\forall x\)
Suy ra : f(x) - g(x) = (x + 1)2 + 7 \(>0\forall x\)
Vậy đa thức f(x) - g(x) vô nhiệm
Cho các đa thức sau:
f ( x ) = - 3 x 2 + 2 x 2 - x + 2 v à g ( x ) = 3 x 2 - 2 x 2 + 5 x - 3
Tìm nghiệm của đa thức f ( x ) + g ( x )
A. x = 5 4
B. x = 0
C. x = 1 4
D. x = - 1 4
Ta có f(x) + g(x) = 4x - 1. Khi đó nghiệm của đa thức tổng là x = 1/4. Chọn C
Bài 1:
a) Tìm x, biết: 3.(x - 1) - (x + 1) = - 1
b) Tìm nghiệm của đa thức: f(x) = 2x2 - x
Bài 2:
Cho đa thức f(x) = 2x2 - 3x + x + 1 ; g(x) = 3x - 3x3 + 2x2 - 2 ;
h(x) = 2x2 + 1
a) Tính g(x) - f(x) + h(x)
b)Tính f(- 1) - h(1/2)
c) Với giá trị nào của x thì f(x) = h(x)
Bài 3:
Cho tam giác ABC vuông tại A, đường cao AH. Gọi AD là tia phân giác của góc HAC, M là trung điểm của AD. Trên nửa mặt phẳng bờ AC chứa điểm B vẽ tia Ax song song với BC. Trên Ax lấy điểm E sao cho AE = DC
a) Chứng minh tam giác ADC = tam giác DAE
b) Chứng minh tam giác ABD là tam giác cân
c) Gọi I là giao điểm của DE và AH ; K là giao điểm của DE và AB. Chứng minh 3 điểm B, I, M thẳng hàng ?
ĐANG CẦN GẤP ! MONG MỌI NGƯỜI GIÚP ĐỠ ! CẢM ƠN RẤT NHIỀU !
Giải giúp mình với .Please
Cho 2 đa thức f(x)=x^4-5x^2-x^3+7x^2+3x-8 và g(x)=x^3-3x^2-x^4-3x-17+2x2 a)tính f(x)+g(x)
b)tìm nghiệm của f(x)+g(x)
a)
\(f\left(x\right)=x^4-5x^2-x^3+7x^2+3x-8=x^4-x^3+2x^2+3x-8\\ g\left(x\right)=x^3-3x^2-x^4-3x-17+2x^2=-x^4+x^3-x^2-3x-17\\ f\left(x\right)+g\left(x\right)=x^2-25\)
b)
\(f\left(x\right)+g\left(x\right)=0\\ \Leftrightarrow x^2-25=0\Leftrightarrow x=\pm5\)
Bài 2: Cho các đa thức f(x)=2x2-x và g(x)=mx2+2mc+1
a, Tìm nghiệm của đa thức f(x)
b, Tìm m biết f(x)+g(x) nhận x=2 là nghiệm.
Giúp mình câu b vs ạ
a) cho f(x )=0
\(=>2x^2-x=0=>x\left(2x-1\right)=0\)
\(=>\left[{}\begin{matrix}x=0\\2x=1\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)
b)cho \(f\left(2\right)+g\left(2\right)=0\)
\(=>2.2^2-2+m.2^2+2m+1=0\)
\(8-2+4m+2m+1=0\)
\(6+2m\left(2+1\right)+1=0\)
\(6+6m=-1\)
\(6m=-7=>m=-\dfrac{7}{6}\)
Bài 2: Cho các đa thức f(x)=2x2-x và g(x)=mx2+2mc+1
a, Tìm nghiệm của đa thức f(x)
b, Tìm m biết f(x)+g(x) nhận x=2 là nghiệm.
Giúp mình câu b vs ạ
câu hỏi : tìm x nguyên để đa thức f(x) chia hết cho đa thức g(x).
a,f(x) = 2x2-x+2 ; g(x) = x+1
b,f(x) = 3x2-4x+6 ; g(x) = 3x-1
c,f(x) = -2x3-7x2-5x+5 ; g(x) = x+2
d,f(x) = x3-3x2-4x+3 ; g(x) = x+1
a)\(f\left(x\right)=2x^2-x-3+5=\left(x+1\right)\left(2x-3\right)+5\)
Để \(f\left(x\right)⋮g\left(x\right)\Leftrightarrow\left(x+1\right)\left(2x-3\right)+5⋮\left(x+1\right)\)
\(\Leftrightarrow5⋮\left(x+1\right)\)
mà \(x+1\in Z\Rightarrow x+1\in U\left(5\right)=\left\{-1;1;5;-5\right\}\)
\(\Leftrightarrow x\in\left\{-2;0;4;-6\right\}\)
Vậy...
b) \(f\left(x\right)=3x^2-4x+6=\left(3x^2-4x+1\right)+5=\left(3x-1\right)\left(x-1\right)+5\)
Để \(f\left(x\right)⋮g\left(x\right)\Leftrightarrow\left(3x-1\right)\left(x-1\right)+5⋮\left(3x-1\right)\)
\(\Leftrightarrow5⋮\left(3x-1\right)\) mà \(3x-1\in Z\Rightarrow3x-1\in U\left(5\right)=\left\{-1;1;5;-5\right\}\)
\(\Leftrightarrow x\in\left\{0;\dfrac{2}{3};2;-\dfrac{4}{3}\right\}\) mà x nguyên\(\Rightarrow x\in\left\{0;2\right\}\)
Vậy...
c)\(f\left(x\right)=\left(-2x^3-7x^2-5x+2\right)+3\)\(=\left(-2x^3-4x^2-3x^2-6x+x+2\right)+3\)\(=\left[-2x^2\left(x+2\right)-3x\left(x+2\right)+\left(x+2\right)\right]+3\)
\(=\left(x+2\right)\left(-2x^2-3x+1\right)+3\)
Làm tương tự như trên \(\Rightarrow x+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Leftrightarrow x\in\left\{-5;-3;-1;1\right\}\)
Vậy...
d)\(f\left(x\right)=x^3-3x^2-4x+3=x\left(x^2-3x-4\right)+3=x\left(x+1\right)\left(x-4\right)+3\)
Làm tương tự như trên \(\Rightarrow x+1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow x\in\left\{-4;-2;0;2\right\}\)
Vậy...
Bài 1. Cho hai đa thức f(x)= 4x4-5x3+3x+2 và g(x)= -4x4+5x3+7. Trong các số -4; -3; 0 và 1, số nào là nghiệm của đa thức f(x) và g(x).
Bài 2. Cho hai đa thức f(x)=-x5+3x2+4x+8 và g(x)= -x5-3x2+4x+2. CMR đa thức f(x)-g(x) không có nghiệm
Bài 1
Gợi ý bạn làm : Bạn thay \(x=-4;x=-3;x=0;x=1\) vào \(f\left(x\right);g\left(x\right)\)
\(\Rightarrow\) Nếu kết quả ra giống nhau thì là nghiệm , ra khác nhau thì không là nghiệm
VD : Thay \(x=-4\) vào \(f\left(x\right)\) và \(g\left(x\right)\)
\(f\left(-4\right)=4.\left(-4\right)^4-5\left(-4\right)^3+3.\left(-4\right)+2=1334\)
\(g\left(x\right)=-4.\left(-4\right)^4+5\left(-4\right)^3+7=-1337\)
Ra hai kết quả khác nhau
\(\Rightarrow x=-4\) không là nghiệm
Bài 2
\(f\left(x\right)-g\left(x\right)=\left(-x^5+3x^2+4x+8\right)-\left(-x^5-3x^2+4x+2\right)\\ =-x^5+3x^2+4x+8+x^5+3x^2-4x-2\\ =\left(-x^5+x^5\right)+\left(3x^2+3x^2\right)+\left(4x-4x\right)+\left(8-2\right)\\ =6x^2+6\\ =x^2+1\\ =x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
\(\Rightarrow\) phương trình vô nghiệm
Câu 12. Cho các đa thức: f(x) = x3 - 2x2 + 3x + 1
g(x) = x3 + x - 1
h(x) = 2x2 - 1
a) Tính: f(x) - g(x) + h(x)
b) Tìm x sao cho f(x) - g(x) + h(x) = 0
\(\text{a)}f\left(x\right)-g\left(x\right)+h\left(x\right)=\left(x^3-2x^2+3x+1\right)-\left(x^3+x-1\right)+\left(2x^2-1\right)\)
\(=x^3-2x^2+3x+1-x^3-x+1+2x^2-1\)
\(=\left(x^3-x^3\right)+\left(-2x^2+2x^2\right)+\left(3x-x\right)+\left(1+1-1\right)\)
\(=2x+1\)
\(\text{b)Vì f(x)-g(x)+h(x)=0}\)
\(\Rightarrow2x+1=0\)
\(\Rightarrow2x\) \(=0-1=-1\)
\(\Rightarrow\) \(x\) \(=\left(-1\right):2=\dfrac{-1}{2}\)
\(\text{Vậy x=}\dfrac{-1}{2}\text{ thì f(x)-g(x)+h(x)=0}\)
a: \(f\left(x\right)-g\left(x\right)+h\left(x\right)\)
\(=2x^3-2x^2+4x+2x^2-1=2x^3+4x-1\)
b: f(x)-g(x)+h(x)=0
\(\Leftrightarrow2x^3+4x-1=0\)
\(\Leftrightarrow x\simeq0,2428\)
a) f(x) - g(x) + h (x) = x3 - 2x2 + 3x + 1 - (x3 + x - 1 ) + (2x2 - 1 )
= x3 - 2x2 + 3x + 1 - x3 - x + 1 + 2x2 - 1
= (x3 - x3) + ( -2x2 + 2x2) + (3x - x) + (1+1 - 1)
= 2x + 1
b) Đặt 2x + 1 = 0
=> 2x = -1
=> x = -1/2