A=(xy^2 -1(x^2y+5)-xy^2(x^2y+5)
Rút gọn biểu thức
a) rút gọn biểu thức\(\dfrac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\) rồi tính giá trị của biểu thức tại x=5 và y=3
B) phân tích đa thức 2x-2y-x^2+2xy-y^2
B) Ta có: 2x-2y-x2+2xy-y2
⇔ 2(x-y)-(x2-2xy+y2)
⇔ 2(x-y)-(x-y)2
⇔ (x-y)(2-x+y)
Đúng thì tick nhé
rút gọn biểu thức:(8x^3-4x^2):4x-(4x^2-5x):(2x)+(2x)^2
(3x^3-x^2y):x^2-(xy^2+x^2y):(xy)+2x(x-1)
a: Ta có: \(\left(8x^3-4x^2\right):4x-\left(4x^2-5x\right):2x+\left(2x\right)^2\)
\(=2x^2-x-2x+\dfrac{5}{2}+4x^2\)
\(=6x^2-3x+\dfrac{5}{2}\)
b: Ta có: \(\left(3x^3-x^2y\right):x^2-\left(xy^2+x^2y\right):xy+2x\left(x-1\right)\)
\(=3x-y-y-x+2x^2-2x\)
\(=2x^2-2y\)
Rút gọn biểu thức
A= \(1+\left[\frac{2x^3y^2+2x^2y^3}{x+y}:\left(\frac{2x^2y^2}{x^2+xy}+\frac{2x^2y^2}{y^2+xy}\right)\right]\)
Rút gọn rồi tính giá trị của biểu thức khi x=1;y=\(-3\frac{1}{4}\)
\(\frac{\left(x-y\right)^2+xy}{\left(x+y\right)^2-xy}\)\(\left[1:\frac{x^5+y^5+x^3y^2+x^2y^3}{\left(x^3y^3\right)\left(x^3+y^3+x^2y+xy^2\right)}\right]\)
Cho các biểu thức sau:
\(A=0,25x^2y^3-0,5x^2y^3+4x^2y^3\)
\(B=1,5(xy^2)^3x^2y-2(xy)^3x^2y4+[0,\left(3\right)x^2y]^2.xy^5\)
\(C=(0,5.xy).\left(-\frac{1}{3}xy^2\right)\)
\(D=\left(\frac{\sqrt{2}}{3}x^3y^5\right).0,6\left(xy^2\right)\)
a) Thu gọn các biểu thức trên
b) Chỉ ra các đơn thức đồng dạng
c) Tính giá trị các đơn thức sau khi thu gọn tại x=\(\frac{1}{3}\)và y = -1
Cho biểu thức B= (\(\dfrac{x-y}{2y-x}\)-\(\dfrac{x^2+y^2+y-2}{x^2-xy-2y^2}\)) : \(\dfrac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)
a) Với giá trị nào của x,y thì BT được xác định
b) Rút gọn BT
a) ĐKXĐ: \(x\ne2y,x\ne-y;x\ne-1\)
b) \(B=\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\dfrac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)
\(B=\left[\dfrac{y-x}{x-2y}-\dfrac{x^2+y^2+y-2}{\left(x+y\right)\left(x-2y\right)}\right]:\dfrac{4x^4+4x^2y+y^2-4}{x\left(x+y\right)+\left(x+y\right)}\)
\(B=\left[\dfrac{\left(y-x\right)\left(x+y\right)}{\left(x-2y\right)\left(x+y\right)}-\dfrac{x^2+y^2+y-2}{\left(x+y\right)\left(x-2y\right)}\right]:\dfrac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+1\right)\left(x+y\right)}\)
\(B=\dfrac{y^2-x^2-x^2-y^2-y+2}{\left(x+y\right)\left(x-2y\right)}:\dfrac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+1\right)\left(x+y\right)}\)
\(B=\dfrac{-2x^2-y+2}{\left(x+y\right)\left(x-2y\right)}\cdot\dfrac{\left(x+1\right)\left(x+y\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\)
\(B=\dfrac{-\left(2x^2+y-2\right)}{\left(x+y\right)\left(x-2y\right)}\cdot\dfrac{\left(x+1\right)\left(x+y\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\)
\(B=\dfrac{-\left(x+1\right)}{\left(x-2y\right)\left(2x^2+y+2\right)}\)
Rút gọn biểu thức: \(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)
\(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)
\(=\frac{\left(x^2+2xy+y^2\right)+xy+y^2}{\left(x^3+x^2y+xy^2+y^3\right)+x^2y-2xy^2-3y^3}\)
\(=\frac{\left(x+y\right)^2+y\left(x+y\right)}{\left(x+y\right)^3+y.\left(x^2-2xy-2y^2\right)}\)
Rút gọn biểu thức sau : x^2+3xy+2y^2 / x^3+2x^2 + xy^2 + 2y^3
cho BIỂU THỨC:
P =\(\left[\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\frac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\right]:\frac{x+1}{2x^2y+2}\)
RÚT GỌN P