x/3=y/8=z/5 và 4x+3y-2x=52
x/5 = y = z/-2 và -x-y+2z =160
x/3=y/8=z/5 và 4x + 3y -2z=52
8x=5y và y - 2x = -10
GIÚP MÌNH MAI MÌNH PHẢI THU RÙI!!!!!!!!!!!!
Ta có : \(\frac{x}{5}=y=\frac{z}{-2}\Rightarrow\frac{x}{5}=\frac{y}{1}=\frac{z}{-2}\Rightarrow\frac{x}{5}=\frac{y}{1}=\frac{2z}{-4}\)
Lại có : -x - y + 2z = 160
=> -(x + y - 2z) = 160
=> x + y - 2z = -160
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{1}=\frac{2z}{-4}=\frac{x+y-2z}{5+1-\left(-4\right)}=\frac{-160}{10}=-16\)
=> x = -16.5 = -80 , y = -16 , z = -16.(-2) = 32
Đặt \(\frac{x}{3}=\frac{y}{8}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=3k\\y=8k\\z=5k\end{cases}}\)
=> 4x = 12k , 3y = 24k , 2z = 10k
=> 4x + 3y - 2z = 12k + 24k - 10k
=> 52 = 26k
=> k = 2
Với k = 2 thì x = 3.2 = 6 , y = 8.2 = 16 , z= 5.2 = 10
8x = 5y => \(\frac{x}{5}=\frac{y}{8}\)
=> \(\frac{2x}{10}=\frac{y}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{10}=\frac{y}{8}=\frac{y-2x}{8-10}=\frac{-10}{-2}=5\)
=> x = 5.5 = 25,y = 5.8 = 40
a) 2x=3y;5y=7z và x-y-z=-27
b)x/4=y/5=z/6 mà x^2-2y^2+z^2=18
c) x:y:z=3:8:5 và 3x+y-2z=14
d) 2x=3y;5y-7z và 3x+5y-7z=30
e)x-3/-4=y+4/7=z-5/3 và 3x-2y+7z=-48
f)-3x=4y;6y=7z và x-2y+3z=-48
g) x/-3=y/7;y/-2 =z/5 và -2x-4y +5z=146
Tìm x,y,z
a)Ta có: \(2x=3y;5y=7z\)và \(x-y-z=-27\)
\(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)và\(x-y-z=-27\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)và \(x-y-z=-27\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{x-y-z}{21-14-10}=\frac{-27}{-3}=9\)
Ta có:\(\frac{x}{21}=9\Rightarrow x=9.21=189\)
\(\frac{y}{14}=9\Rightarrow y=9.14=126\)
\(\frac{z}{10}=9\Rightarrow z=9.10=90\)
Vậy:\(x=189;y=126\)và\(z=90\)
b) \(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)và\(x^2-2y^2+z^2=18\)
\(\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)và\(x^2-2y^2+z^2=18\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)
Ta có:\(\frac{x^2}{16}=9\Rightarrow x^2=144\Rightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)
\(\frac{2y^2}{50}=9\Rightarrow2y^2=450\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)
\(\frac{z^2}{36}=9\Rightarrow z^2=324\Rightarrow\orbr{\begin{cases}z=18\\z=-18\end{cases}}\)
Vậy: \(x=12;y=15;z=18\)hoặc \(x=-12;y=-15;z=-18\)
c) \(x:y:z=3:8:5\)và\(3x+y-2z=14\)
\(\Rightarrow\frac{x}{3}=\frac{y}{8}=\frac{z}{5}\)và\(3x+y-2z=14\)
\(\Rightarrow\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}\)và \(3x+y-2z=14\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}=\frac{3x+y-2z}{9+8-10}=\frac{14}{7}=2\)
Ta có: \(\frac{3x}{9}=2\Rightarrow3x=18\Rightarrow x=6\)
\(\frac{y}{8}=2\Rightarrow y=16\)
\(\frac{2z}{10}=2\Rightarrow2z=20\Rightarrow z=10\)
Vậy:\(x=6;y=16;z=10\)
giải các hệ phương trình
9x-6y=4 và 3(4x-3y)=-3x+y+7
3(x+1)+2y=-x và 5(x+y)=-3x+y-5
2(2x+3y)=3(2x-3y)+10 và 4x-3y=4(6y-2x)+3
a, x-1/2 = y-2/3 = z-3/4 và 2x + 3y - z = 50
b, 2x = 3y = 5z và x+y-z = 95
c, x/2 = y/3 = z/5 và xyz =810
b, Giải:
Ta có: \(2x=3y=5z\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)
+ \(\frac{x}{15}=5\Rightarrow x=5.15=75\)
+ \(\frac{y}{10}=5\Rightarrow y=10.5=50\)
+ \(\frac{z}{6}=5\Rightarrow z=5.6=30\)
Vậy x = 75; y = 50; z = 30
a) wên cách làm
c)
=>\(\frac{x.y.z}{2.3.5}=\frac{810}{30}=27\)
=>\(\frac{x}{2}=27=>x=54\)
\(=>\frac{y}{3}=27=>y=81\)
\(=>\frac{z}{5}=27=>z=135\)
Tìm x, y, z biết:
a. x/1 = y/2 = z/3 và 4x - 3y + 2z = 36
b. x/3 = y/8 = z/5 và 3x + y - 2z = 14
c. x/3 = y/8 = z/5 và 2x + 3y - z = 50
A)Dựa vào tính chất của dãy tỉ số bằng nhau:
x/1 = y/2 = z/3 = 4x -3y +2z /4.1 -3.2 +2.3 =36/4 =9
x/1=9 =>x=9.1=9
y/2=9=>y=9.2=18
z/3=9=>z=9.3=27
B)Dựa vào tính chất của dãy tỉ số bằng nhau:
x/3=y/8=z/5=3x+y-2z/3.3+8-2.5=14/7=2
x/3=2=>x=2.3=6
y/8=2=>y=2.8=16
z/5=2=>z=2.5=10
C)Dựa vào tính chất của dãy tỉ số bằng nhau:
x/3=y/8=z/5=2y+3y-z/2.3+3.8-5=50/25=2
x/3=2=>x=2.3=6
y/8=2=>y=2.8=16
z/5=2=>z=2.5=10
A)Dựa vào tính chất của dãy tỉ số bằng nhau:
x/1 = y/2 = z/3 = 4x -3y +2z /4.1 -3.2 +2.3 =36/4 =9
x/1=9 =>x=9.1=9
y/2=9=>y=9.2=18
z/3=9=>z=9.3=27
B)Dựa vào tính chất của dãy tỉ số bằng nhau:
x/3=y/8=z/5=3x+y-2z/3.3+8-2.5=14/7=2
x/3=2=>x=2.3=6
y/8=2=>y=2.8=16
z/5=2=>z=2.5=10
C)Dựa vào tính chất của dãy tỉ số bằng nhau:
x/3=y/8=z/5=2y+3y-z/2.3+3.8-5=50/25=2
x/3=2=>x=2.3=6
y/8=2=>y=2.8=16
z/5=2=>z=2.5=10
Tìm x , y , z
\(\frac{x}{3}=\frac{y}{8}=\frac{z}{5}\) 4x + 3y - 2z = 52
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{8}=\frac{z}{5}=\frac{4x}{12}=\frac{3y}{24}=\frac{2z}{10}=\frac{4x+3y-2z}{12+24-10}=\frac{52}{26}=2\)
suy ra: \(\frac{x}{3}=2\Rightarrow x=2.3=6\)
\(\frac{y}{8}=2\Rightarrow y=2.8=16\)
\(\frac{z}{5}=2\Rightarrow z=2.5=10\)
Tìm x, y, z :
a, \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\) và x2+y2+z2=14
b, \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và 2x+3y-z=50
c, 2x=3y=5z và x+y-z=95
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x-1}{2}\) = \(\frac{y-2}{3}\) = \(\frac{z-3}{4}\) = \(\frac{2x-2}{4}\) = \(\frac{3y-6}{9}\) = \(\frac{z-3}{4}\)
= \(\frac{2x-2+3y-6-\left(z-3\right)}{4+9-4}\) = \(\frac{2x-2+3y-6-z+3}{9}\) = \(\frac{50-5}{9}\) = \(\frac{45}{9}\) = 5
Ta có: \(\frac{x-1}{2}\) = 5 => x - 1 = 10 => x = 11
\(\frac{y-2}{3}\) = 5 => y - 2 = 15 => y = 17
\(\frac{z-3}{4}\) = 5 => z - 3 = 20 => z = 23
Vậy x = 11 ; y = 17 ; z = 23
a) \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)
\(\Rightarrow\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)
\(\Rightarrow\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{z^2}{6^2}\)
Áp dụng tính chất dãy tỉ sô bằng nhau , ta có :
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
\(\Rightarrow x^2=1;y^2=4;z^2=9\)
=> x = 1 hoặc -1
y = 2 hoặc -2
z = 3 hoặc -3
b) Giải:
Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)
\(\Rightarrow x=2k+1,y=3k+2,z=4k+3\)
Ta có: \(2x+3y-z=50\)
\(\Rightarrow2\left(2k+1\right)+3\left(3k+2\right)-\left(4k+3\right)=50\)
\(\Rightarrow4k+2+9k+6-4k-3=50\)
\(\Rightarrow\left(4k+9k-4k\right)+\left(2+6-3\right)=50\)
\(\Rightarrow9k+5=50\)
\(\Rightarrow9k=45\)
\(\Rightarrow k=5\)
\(\Rightarrow x=5.2+1=11\)
\(\Rightarrow y=3.5+2=17\)
\(\Rightarrow z=4.5+3=23\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(11;17;23\right)\)
c) Giải:
Ta có: \(2x=3y=5z\Rightarrow\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}=\frac{95}{\frac{1}{19}}=1805\)
+) \(\frac{x}{\frac{1}{2}}=1805\Rightarrow x=\frac{1805}{2}\)
+) \(\frac{y}{\frac{1}{3}}=1805\Rightarrow y=\frac{1805}{3}\)
+) \(\frac{z}{\frac{1}{5}}=1805\Rightarrow z=361\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(\frac{1805}{2};\frac{1805}{3};361\right)\)
Tìm x, y, z:
a, x/3 = y/4 = z/5 và -2x mủ 2 + y mủ 2 - 3z mủ 2 = - 77
b, x/10 = y/6 = z/24 và 5x + y - 2z = 28
c, x/3 = y/4 ; y/5 = z/7 và 2x + 3y - z = 186
Câu a bạn Nguyễn Thị Anh đã trả lời, mình trả lời câu c.
b) Câu này bạn ghi sai đề rồi!
c) Ta có: x/3 = y/4 => x/15 = y/20
y/5 = z/7 => y/20 = z/28
=> x/15 = y/20 = z/28
Áp dụng tính chất dãy tỉ số bằng nhau:
=> x/15 = y/20 = z/28 = 2x/30 = 3y/60 = 2x + 3y - z / 30 + 60 - 28 = 186/62 = 3
x/15 = 3 => x = 15 . 3 = 45
y/20 = 3 => y = 20 . 3 = 60
z/28 = 3 => z = 28 . 3 = 84
Vậy x = 45; y = 60; z = 84.
a) tìm x, y, z
2x = 3y; 4y = 5z và x + y + z = 11
b) tìm x, biết: |x + 1| + |x + 2| + |x + 3|= 4x
b) |x + 1| + |x + 2| + |x + 3| = 4x
Có: \(\left\{{}\begin{matrix}\left|x+1\right|>0\\\left|x+2\right|>0\\\left|x+3\right|>0\end{matrix}\right.\) \(\forall x\)
Do đó, \(4x>0=>x>0\).
Lúc này ta có: \(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)=4x\)
=> \(3x+6=4x\)
=> \(4x-3x=6\)
=> \(1x=6\)
=> \(x=6:1\)
=> \(x=6\)
Vậy \(x=6\).
Chúc bạn học tốt!