Thực hiện phép tính
\(\dfrac{3}{2x^2+2x}+\dfrac{2x-1}{x^2-1}-\dfrac{2}{x}\)
thực hiện phép tính
\(\dfrac{11x}{2x-3}+\dfrac{x-18}{2x-3}\)
\(\dfrac{2x+12}{4x^2-9}+\dfrac{2x+5}{4x-6}\)
\(\dfrac{x}{2x+1}+\dfrac{-1}{4x^2-1}+\dfrac{2-x}{2x-1}\)
\(\dfrac{11x}{2x-3}+\dfrac{x-18}{2x-3}\left(ĐKXĐ:x\ne\dfrac{3}{2}\right)\\ =\dfrac{11x+x-18}{2x-3}\\ =\dfrac{12x-18}{2x-3}\\ =\dfrac{6\left(2x-3\right)}{2x-3}\\ =6\)
\(\dfrac{2x+12}{4x^2-9}+\dfrac{2x+5}{4x-6}\left(ĐKXĐ:x\ne\dfrac{3}{2};x\ne\dfrac{-3}{2}\right)\\ =\dfrac{2x+12}{\left(2x-3\right)\left(2x+3\right)}+\dfrac{2x+5}{2\left(2x-3\right)}\\ =\dfrac{4x+24}{2\left(2x-3\right)\left(2x+3\right)}+\dfrac{\left(2x+5\right)\left(2x+3\right)}{2\left(2x-3\right)\left(2x+3\right)}\\ =\dfrac{4x+24+4x^2+6x+10x+15}{2\left(2x-3\right)\left(2x+3\right)}\\ =\dfrac{4x^2+20x+39}{2\left(2x-3\right)\left(2x+3\right)}\)
\(\dfrac{x}{2x+1}+\dfrac{-1}{4x^2-1}+\dfrac{2-x}{2x-1}\left(ĐKXĐ:x\ne\dfrac{1}{2};x\ne\dfrac{-1}{2}\right)\\ =\dfrac{x\left(2x-1\right)-1+\left(2-x\right)\left(2x+1\right)}{\left(2x+1\right)\left(2x-1\right)}\\ =\dfrac{2x^2-x-1+4x+2-2x^2-x}{\left(2x-1\right)\left(2x+1\right)}\\ =\dfrac{2x+1}{\left(2x+1\right)\left(2x-1\right)}\\ =\dfrac{1}{2x-1}\)
thực hiện phép tính
\(\dfrac{1}{3x-2}-\dfrac{1}{3x+2}-\dfrac{3x-6}{9x^2-4}\)
\(\dfrac{x+25}{2x^2-50}-\dfrac{x+5}{x^2-5x}-\dfrac{5-x}{2x^2+10x}\)
\(\dfrac{1-2x}{2x}-\dfrac{4x}{2x-1}-\dfrac{3}{2x-4x^2}\)
a) \(\dfrac{1}{3x-2}-\dfrac{1}{3x+2}-\dfrac{3x-6}{9x^2-4}\)
\(=\dfrac{3x+2-3x+2-3x+6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{-3x+10}{\left(3x-2\right)\left(3x+2\right)}\)
b) \(\dfrac{x+25}{2x^2-50}-\dfrac{x+5}{x^2-5x}-\dfrac{5-x}{2x^2+10x}\)
\(=\dfrac{x+25}{2\left(x-5\right)\left(x+5\right)}-\dfrac{x+5}{x\left(x-5\right)}+\dfrac{x-5}{2x\left(x+5\right)}\)
\(=\dfrac{x^2+25x-2\left(x+5\right)^2+\left(x-5\right)^2}{2x\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{x^2+25x-2x^2-20x-50+x^2-10x+25}{2x\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{-5x-25}{2x\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{-5\left(x+5\right)}{2x\left(x-5\right)\left(x+5\right)}=\dfrac{-5}{2x\left(x-5\right)}\)
c) Ta có: \(\dfrac{1-2x}{2x}-\dfrac{4x}{2x-1}-\dfrac{3}{2x-4x^2}\)
\(=\dfrac{-\left(2x-1\right)^2-8x^2+3}{2x\left(2x-1\right)}\)
\(=\dfrac{-\left(4x^2-4x+1\right)-8x^2+3}{2x\left(2x-1\right)}\)
\(=\dfrac{-4x^2+4x-1-8x^2+3}{2x\left(2x-1\right)}\)
\(=\dfrac{-12x^2+4x+2}{2x\left(2x-1\right)}\)
\(\dfrac{2x+3}{1-x^2}+\dfrac{2x+1}{x^2-2x+1}\)
THỰC HIỆN PHÉP TÍNH
Ta có: \(\dfrac{2x+3}{1-x^2}+\dfrac{2x+1}{x^2-2x+1}\)
\(=\dfrac{-2x-3}{\left(x-1\right)\left(x+1\right)}+\dfrac{2x+1}{\left(x-1\right)^2}\)
\(=\dfrac{\left(-2x-3\right)\left(x-1\right)}{\left(x-1\right)^2\cdot\left(x+1\right)}+\dfrac{\left(2x+1\right)\left(x+1\right)}{\left(x+1\right)\cdot\left(x-1\right)^2}\)
\(=\dfrac{-2x^2+2x-3x+3+2x^2+2x+x+1}{\left(x-1\right)^2\cdot\left(x+1\right)}\)
\(=\dfrac{2x+4}{\left(x-1\right)^2\cdot\left(x+1\right)}\)
thực hiện phép tính
\(\dfrac{4x^2-3x+5}{x^3-1}-\dfrac{1+2x}{x^2+x+1}-\dfrac{6}{x-1}\)
\(\dfrac{15x-11}{x^2+2x-3}-\dfrac{3x-2}{x-1}-\dfrac{2x+3}{3+x}\)
\(\dfrac{x+1}{x-3}-\dfrac{1-x}{x+3}-\dfrac{2x\left(1-x\right)}{9-x^2}\)
\(\dfrac{4x^2-3x+5}{x^3-1}-\dfrac{1+2x}{x^2+x+1}-\dfrac{6}{x-1}\)
\(\Leftrightarrow\dfrac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{1+2x}{x^2+x+1}-\dfrac{6}{x-1}\)
\(ĐKXĐ:x\ne1\)
\(\dfrac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{(1+2x)\left(x-1\right)}{(x^2+x+1)\left(x-1\right)}-\dfrac{6\left(x^2+x+1\right)}{(x-1)\left(x^2+x+1\right)}\)
\(\Rightarrow4x^2-3x+5-\left(1+2x\right)\left(x-1\right)-6\left(x^2+x+1\right)\)
\(\Rightarrow4x^2-3x+5-\left(x-1+2x^2-2x\right)-6x^2-6x-6\)
\(\Rightarrow4x^2-3x+5-x+1-2x^2+2x-6x^2-6x-6\)
\(\Rightarrow-4x^2-8x\)
⇒-4x(x-4)
Thực hiện phép tính: (câu nào khó quá bỏ qua)
a) \(\dfrac{x^2+2}{x^3+1}\)-\(\dfrac{1}{x+1}\)
b)\(\dfrac{x}{x^2-2x}\)-\(\dfrac{x^2+4x}{x^3-4x}\)-\(\dfrac{2}{x^2+2x}\)
c)\(\dfrac{1}{2-2x}\)-\(\dfrac{3}{2+2x}\)+\(\dfrac{2x}{x^2-1}\)
d) \(\dfrac{1}{\left(a-b\right)\left(b-c\right)}\)+\(\dfrac{1}{\left(b-c\right)\left(c-a\right)}\)+\(\dfrac{1}{\left(c-a\right)\left(a-b\right)}\)
À mà nay sinh nhật tui á
a:
ĐKXĐ: x<>-1
\(\dfrac{x^2+2}{x^3+1}-\dfrac{1}{x+1}\)
\(=\dfrac{x^2+1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{1}{x+1}\)
\(=\dfrac{x^2+1-x^2+x-1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x}{\left(x+1\right)\left(x^2-x+1\right)}\)
b: \(\dfrac{x}{x^2-2x}-\dfrac{x^2+4x}{x^3-4x}-\dfrac{2}{x^2+2x}\)
\(=\dfrac{x}{x\left(x-2\right)}-\dfrac{x\left(x+4\right)}{x\left(x^2-4\right)}-\dfrac{2}{x\left(x+2\right)}\)
\(=\dfrac{1}{x-2}-\dfrac{x+4}{x^2-4}-\left(\dfrac{1}{x}-\dfrac{1}{x+2}\right)\)
\(=\dfrac{1}{x-2}-\dfrac{x+4}{x^2-4}-\dfrac{1}{x}+\dfrac{1}{x+2}\)
\(=\left(\dfrac{1}{x-2}-\dfrac{x+4}{x^2-4}+\dfrac{1}{x+2}\right)-\dfrac{1}{x}\)
\(=\dfrac{x+2-x-4+x-2}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x}\)
\(=\dfrac{x-4}{x^2-4}-\dfrac{1}{x}\)
\(=\dfrac{x^2-4x-x^2+4}{x\left(x^2-4\right)}=\dfrac{-4x+4}{x\left(x-2\right)\left(x+2\right)}\)
c: \(\dfrac{1}{2-2x}-\dfrac{3}{2+2x}+\dfrac{2x}{x^2-1}\)
\(=\dfrac{-1}{2\left(x-1\right)}-\dfrac{3}{2\left(x+1\right)}+\dfrac{2x}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{-x-1-3x+3+4x}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{2}{2\left(x-1\right)\left(x+1\right)}=\dfrac{1}{x^2-1}\)
d:
\(\dfrac{1}{\left(a-b\right)\left(b-c\right)}+\dfrac{1}{\left(b-c\right)\left(c-a\right)}+\dfrac{1}{\left(c-a\right)\left(a-b\right)}\)
\(=\dfrac{c-a+a-b+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)
Thực hiện phép tính , rút gọn bt
\(\dfrac{2x+y}{2x^2-xy}+\dfrac{16x}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\)
\(\dfrac{x+y}{2\left(x-y\right)}+\dfrac{2}{x^2+3}+\dfrac{1}{x+1}\)
Thực hiện phép tính sau:
a) \(2x\left(1+\dfrac{1}{2}x^2-\dfrac{5}{2}x^3\right)\)
b) \(\dfrac{4x}{2x-1}-\dfrac{7x+3}{4x^2-1}\)
a: \(=2x+x^3-5x^4\)
b: \(=\dfrac{8x^2+4x-7x-3}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{8x^2-3x-3}{\left(2x-1\right)\left(2x+1\right)}\)
Thực hiện phép tính:
a) \(\dfrac{x}{2x-y}-\dfrac{2x-y}{4x-2y}\)
b)\(\dfrac{3x+1}{x^2-1}-\dfrac{x}{2x-2}\)
c) \(\dfrac{x-2}{x^2-4}-\dfrac{-8-x}{3x^2+6x}\)
d) \(\dfrac{2}{2x-3}-\dfrac{x}{2x+3}-\dfrac{2x+1}{9-4x^2}\)
a: \(=\dfrac{2x-2x+y}{2\left(2x-y\right)}=\dfrac{y}{2\left(2x-y\right)}\)
b: \(=\dfrac{3x+1}{\left(x-1\right)\left(x+1\right)}-\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{6x+2-x^2-x}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{-x^2+5x+2}{2\left(x-1\right)\left(x+1\right)}\)
c: \(=\dfrac{1}{x+2}+\dfrac{x+8}{3x\left(x+2\right)}\)
\(=\dfrac{3x+x+8}{3x\left(x+2\right)}=\dfrac{4x+8}{3x\left(x+2\right)}=\dfrac{4}{3x}\)
d: \(=\dfrac{4x+6-2x^2+3x+2x+1}{\left(2x-3\right)\left(2x+3\right)}\)
\(=\dfrac{-2x^2+9x+7}{\left(2x-3\right)\left(2x+3\right)}\)
Thực hiện phép tính:
\(\dfrac{3x+2}{x^2-2x+1}+\dfrac{-6}{x^2-1}+\dfrac{2-3x}{x^2+2x+1}\)
\(=\dfrac{3x+2}{\left(x-1\right)^2}-\dfrac{6}{\left(x-1\right)\left(x+1\right)}+\dfrac{2-3x}{\left(x+1\right)^2}\\ =\dfrac{\left(3x+2\right)\left(x+1\right)^2-6\left(x^2-1\right)+\left(2-3x\right)\left(x-1\right)^2}{\left(x-1\right)^2\left(x+1\right)^2}\\ =\dfrac{10x^2+10}{\left(x-1\right)^2\left(x+1\right)^2}\)