(-2)+4+(-6)+8+...+(-2022)+2024
1) Tính hợp lý :
P=1-2-3+4+5-6-7+8+.........+2021-2022-2023+2024
P=[(1-2)+(-3+4)+(5-6)+(-7+8)+...+(993-994)+(-995+996)]+997
P=[(-1)+1+(-1)+1+...+(-1)+1+(-1)+1]+997
P= 0 +0 +...+ 0 +997
P=997
S=1-3+5-7+9-11+....+2023-2025
S=1+2-3-4+5+6-7-8+....+2021+2022-2023-2024
a:
Sửa đề: \(S=1-3+5-7+...+2021-2023+2025\)
Từ 1 đến 2025 sẽ có:
\(\dfrac{2025-1}{2}+1=\dfrac{2024}{2}+1=1013\left(số\right)\)
Ta có: 1-3=5-7=...=2021-2023=-2
=>Sẽ có \(\dfrac{1013-1}{2}=\dfrac{1012}{2}=506\) cặp có tổng là -2 trong dãy số này
=>\(S=506\cdot\left(-2\right)+2025=2025-1012=1013\)
b: \(S=1+2-3-4+5+6-7-8+...+2021+2022-2023-2024\)
Từ 1 đến 2024 là: \(\dfrac{\left(2024-1\right)}{1}+1=2024\left(số\right)\)
Ta có: 1+2-3-4=5+6-7-8=...=2021+2022-2023-2024=-4
=>Sẽ có \(\dfrac{2024}{4}=506\) cặp có tổng là -4 trong dãy số này
=>\(S=506\cdot\left(-4\right)=-2024\)
6-8-10-12+14+16-18-20-22+24+...+2016-2018-2020-2022+2024
6-8-10-12+14+16-18-20-22+24+....+2016-2018-2020-2022+2024
So sánh : \(A=\dfrac{8^{2021}+2}{8^{2022}+2}\) với \(B=\dfrac{8^{2023}+2}{8^{2024}+2}\)
Giúp với
\(8A=\dfrac{8^{2022}+16}{8^{2022}+2}=1+\dfrac{14}{8^{2022}+2}\)
\(8B=\dfrac{8^{2024}+16}{8^{2024}+2}=1+\dfrac{14}{8^{2024}+2}\)
Vì \(\dfrac{14}{8^{2022}+2}>\dfrac{14}{8^{2024}+2}\)
=> 8A>8B
=> A>B
Tìm số nguyên dương x sao cho 5x +13 là bội của 2x+1
Tìm x biết (2x-18).(3x+12)=0
Tính S= 1-2-3+4+
5-6-7+8+...+2021-2022-2023+2024+2025
1. Giải:
Do \(5x+13B\in\left(2x+1\right)\Rightarrow5x+13⋮2x+1.\)
\(\Rightarrow2\left(5x+13\right)⋮2x+1\Rightarrow10x+26⋮2x+1.\)
\(\Rightarrow5\left(2x+1\right)+21⋮2x+1.\)
Do 5(2x+1)⋮2x+1⇒ Ta cần 21⋮2x+1.
⇒ 2x+1 ϵ B(21)=\(\left\{1;3;7;21\right\}.\)
Ta có bảng:
2x+1 | 1 | 3 | 7 | 21 |
x | 0 | 1 | 3 | 10 |
TM | TM | TM | TM |
Vậy xϵ\(\left\{0;1;3;10\right\}.\)
2. Giải:
Do (2x-18).(3x+12)=0.
⇒ 2x-18=0 hoặc 3x+12=0.
⇒ 2x =18 3x =-12.
⇒ x =9 x =-4.
Vậy xϵ\(\left\{-4;9\right\}.\)
3. S= 1-2-3+4+5-6-7+8+...+2021-2022-2023+2024+2025.
S= (1-2-3+4)+(5-6-7+8)+...+(2021-2022-2023+2024)+2025 Có 506 cặp.
S= 0 + 0 + ... + 0 + 2025.
⇒S= 2025.
so sánh 2020/2022 + 2022/2024 và 2020+2022/2022+2024
2020/2022 > 2020/2022+2024 (1)
2022/2024 > 2022/2022+2024 (2)
từ (1) và (2) cộng vế theo vế ta có :
2020/2022 + 2022/2024 > 2020/2022+2024 + 2022/2022+2024
=> 2020/2022 + 2022/2024 > 2020+2022/2022+2024
Cho em xin hỏi bài toán này ạ! Em xin cảm ơn !
1/2021×2022+1/2022×2023+1/2023×2024+1/2024×2025-4/2021×2025=
A = \(\dfrac{1}{2021.2022}\) + \(\dfrac{1}{2022.2023}\) + \(\dfrac{1}{2023.2024}\) + \(\dfrac{1}{2024.2025}\) - \(\dfrac{4}{2021.2025}\)
A = \(\dfrac{1}{2021}\) - \(\dfrac{1}{2022}\) + \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\) + \(\dfrac{1}{2023}\) - \(\dfrac{1}{2024}\) + \(\dfrac{1}{2024}\) - \(\dfrac{1}{2025}\) - \(\dfrac{1}{2021}\) + \(\dfrac{1}{2025}\)
A = (\(\dfrac{1}{2021}\) - \(\dfrac{1}{2021}\)) + (\(\dfrac{1}{2022}\) - \(\dfrac{1}{2022}\)) + (\(\dfrac{1}{2023}\) - \(\dfrac{1}{2023}\)) + (\(\dfrac{1}{2024}\) - \(\dfrac{1}{2024}\)) + (\(\dfrac{1}{2025}\) - \(\dfrac{1}{2025}\))
A = 0 + 0 +0 + 0+ ... + 0
A = 0
\(\dfrac{2022}{2023}\)+\(\dfrac{2023}{2024}\)+\(\dfrac{2024}{2022}\)