cho a,b,c thuộc R, chứng minh : 18a^2 +3b^2 +7c^2 + 18 lớn hơn hoặc = 16ac -6bc +12a
a)Chứng minh rằng với mọi a và b thì
a^4 - 2a^3b+2a^2b^2 - 2ab^3+ b^4 lớn hơn hoăc bằng 0
b) Cho a^2 = b^2+c^2. Chứng minh rằng (5a - 3b+ 4c)(5a - 3b - 4c) lớn hơn hoặc bằng 0
a, Chứng minh rằng (a-1) x (a-2) x (a-3) x (a-4) + 1 lớn hơn hoặc bằng 0 với mọi a thuộc R
b, Cho x + 2 x y = 5 . Chứng minh rằng x2 + y2 lớn hơn hoặc bằng 5
cho a,b là các số dương.a+b=4.chứng minh 2a+3b+b/a+10/b lớn hơn hoặc bằng 18
Với các số dương a,b,c chứng minh rằng: \(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}\) lớn hơn hoặc bằng \(\frac{3}{a+b}+\frac{18}{3b+4c}+\frac{9}{c+6a}\)
Keke
\(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}\ge\frac{3}{a+b}+\frac{18}{3b+4c}+\frac{9}{c+6a}\) \(\left(i\right)\)
Đặt \(x=\frac{1}{a};\) \(y=\frac{2}{b};\) và \(z=\frac{3}{c}\) \(\Rightarrow\) \(\hept{\begin{cases}a=\frac{1}{x}\\b=\frac{2}{b}\\c=\frac{3}{z}\end{cases}}\) nên \(x,y,z>0\)
Khi đó, ta có thể biểu diễn lại bđt \(\left(i\right)\) dưới dạng ba biến \(x,y,z\) như sau:
\(x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3xz}{2z+x}\) \(\left(ii\right)\)
Lúc này, ta cần phải chứng minh bđt \(\left(ii\right)\) luôn đúng với mọi \(x,y,z>0\)
Thật vậy, ta có:
\(2x+y=x+x+y\ge3\sqrt[3]{x^2y}\)
\(\Rightarrow\) \(\frac{3xy}{2x+y}\le\frac{3xy}{3\left(x^2y\right)^{\frac{1}{3}}}=\left(xy^2\right)^{\frac{1}{3}}\le\frac{x+2y}{3}\) \(\left(1\right)\)
Thiết lập các bđt còn lại theo vòng hoán vị \(y\rightarrow z\rightarrow x\) , ta có:
\(\frac{3yz}{2y+z}\le\frac{y+2z}{3}\) \(\left(2\right);\) \(\frac{3xz}{2z+x}\le\frac{z+2x}{3}\) \(\left(3\right)\)
Cộng từng vế ba bđt \(\left(1\right);\) \(\left(2\right);\) và \(\left(3\right)\) ta được:
\(VP\left(ii\right)\le\frac{x+2y+y+2z+z+2x}{3}=\frac{3\left(x+y+z\right)}{3}=x+y+z=VT\left(ii\right)\)
Vậy, bđt \(\left(ii\right)\) được chứng minh.
nên kéo theo bđt \(\left(i\right)\) luôn là bđt đúng với mọi \(a,b,c>0\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(x=y=z\) \(\Leftrightarrow\) \(6a=3b=2c\)
bạn làm giống mình đó
cho a,b là các số dương.a+b=4.chứng minh rằng 2a+3b+b/a+10/b lớn hơn hoặc bằng 18
Chứng minh: a2 + b2 + c2 + d2 + e2 lớn hơn hoặc bằng a(b+c+d+e) với mọi a,b,c,d,e thuộc R
Mình sẽ chứng minh bằng biến đổi tương đương nhé :)
\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
\(\Leftrightarrow\left(\frac{a^2}{4}-ab+b^2\right)+\left(\frac{a^2}{4}-ac+c^2\right)+\left(\frac{a^2}{4}-ad+d^2\right)+\left(\frac{a^2}{4}-ae+e^2\right)\ge0\)
\(\Leftrightarrow\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}-e\right)^2\ge0\)(luôn đúng)
Vì BĐT cuối luôn đúng nên BĐT ban đầu được chứng minh.
a,b,c > 0 chứng minh: 4a2 + 3b2 + 5c2 lớn hơn hoặc bằng 2(ab + 2bc + 3ca)
Cho a,b\(thuộc\) R. Chứng minh 2(a4+b4)lớn hơn hoặc bằng ab3+a3b+2a2b2
Ta có: \(2\left(a^4+b^4\right)-\left(ab^3+a^3b+2a^2b^2\right)\)
\(=\left(a^2-b^2\right)^2+\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
Ta có đpcm
Tính
1) \(5\sqrt{a}-4b\sqrt{25a^2}+5a\sqrt{16ab^2}-2\sqrt{9a}\)
Với a, b lớn hơn hoặc bằng 0
2) \(5a\sqrt{64ab^3}-\sqrt{3}\sqrt{12a^3b^3}+2ab\sqrt{9ab}-5b\sqrt{81a^3b}\)
Với a,b lớn hơn hoặc bằng 0
- 2 câu này hơi khó.Bạn nào biết làm thì giúp mình nhé.Giải chi tiết từng bước giúp mình luôn nhé!!