tìm giá trị của m để biểu thức A=m^2-m+1 đạt giá trị nhỏ nhất
Tìm giá trị của m để biểu thức A=m mũ 2-2m-5 đạt giá trị nhỏ nhất . Tính giá trị nhỏ nhất đó
\(A=m^2-2m-5\)
\(=m^2-2m+1-6\)
\(=\left(m-1\right)^2-6\ge-6\)
Dấu '' = '' xảy ra khi \(\left(m-1\right)^2=0\Leftrightarrow m=1\)
Vậy \(Min_A=-6\) khi \(m=1\)
\(A=m^2-2m-5\)
\(=\left(m^2-2m+1\right)-6\)
\(=\left(m-1\right)^2-6\ge-6\left(Vì\left(m-1\right)^2\ge0\forall m\right)\)
Min \(A=-6\Leftrightarrow m=1\)
Tìm giá trị của m để biểu thức A=m mũ 2-2m-5 đạt giá trị nhỏ nhất . Tính giá trị nhỏ nhất đó
`A=m^2-2m-5`
`A=m^2-2m+1-6`
`A=(m-1)^2-6`
Vì `(m-1)^2 >= 0 AA m`
`=>(m-1)^2-6 >= -6 AA m`
Hay `A >= -6 AA m`
Dấu "`=`" xảy ra `<=>(m-1)^2=0<=>m-1=0<=>m=1`
Vậy `GTN N` của `A` là `-6` khi `m=1`
Cho biểu thức M= x-3/căn(x-1) -căn (2)
tìm giá trị của x để M đạt giá trị nhỏ nhất và tìm giá trị nhỏ nhất đó
cho phương trình x^2-2(m+2)+m^2+4m+3=0 tìm giá trị của m để biểu thức A= x1^2+x2^2 đạt giá trị nhỏ nhất
Để phương trình có nghiệm khi \(\Delta>0\)
\(\Delta=\left(2m+4\right)^2-4\left(m^2+4m+3\right)=4m^2+16m+16-4m^2-16m-12\)
\(=4>0\)
Vậy phương trình luôn có 2 nghiệm pb
Theo Vi et : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+4\\x_1x_2=\dfrac{c}{a}=m^2+4m+3\end{matrix}\right.\)
\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(2m+4\right)^2-2\left(m^2+4m+3\right)\)
\(=4m^2+16m+16-2m^2-8m-6=2m^2+8m+10\)
\(=2\left(m^2+4m+5\right)=2\left(m+2\right)^2+2\ge2\)
Dấu ''='' xảy ra khi m = -2
\(\Delta'=\left(m+2\right)^2-\left(m^2+4m+3\right)=1>0\)
\(\Rightarrow\) pt luôn có 2 nghiệm phân biệt
Áp dụng hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=2m+4\\x_1x_2=m^2+4m+3\end{matrix}\right.\)
Ta có: \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4\left(m+2\right)^2-2\left(m^2+4m+3\right)\)
\(=2m^2+8m+10=2\left(m^2+4m+4\right)+2=2\left(m+2\right)^2+2\ge2\)
\(\Rightarrow\) GTNN của \(x_1^2+x_2^2=2\) khi \(m=-2\)
Tìm giá trị của m để phương trình x 2 + (4m + 1)x + 2(m – 4) = 0 có hai nghiệm x 1 ; x 2 và biểu thức A = ( x 1 − x 2 ) 2 đạt giá trị nhỏ nhất
A. m = 1
B. m = 0
C. m = 2
D. m = 3
Phương trình x 2 + (4m + 1)x + 2(m – 4) = 0 có a = 1 ≠ 0 và
∆ = ( 4 m + 1 ) 2 – 8 ( m – 4 ) = 16 m 2 + 33 > 0 ; ∀ m
Nên phương trình luôn có hai nghiệm x 1 ; x 2
Theo hệ thức Vi-ét ta có x 1 + x 2 = − 4 m − 1 x 1 . x 2 = 2 n − 8
Xét
A = x 1 - x 2 2 = x 1 + x 2 2 - 4 x 1 x 2 = 16 m 2 + 33 ≥ 33
Dấu “=” xảy ra khi m = 0
Vậy m = 0 là giá trị cần tìm
Đáp án: B
tìm giá trị của x để biểu thức đạt giá trị nhỏ nhất : M=(2x-1)2-3.|(2x-1)| +2
\(M=\left(2x-1\right)^2-3\left|2x-1\right|+2=\left|2x-1\right|^2-3\left|2x-1\right|+2\)
Đặt: | 2x -1 | = t ( t >=0)
=> \(M=t^2-3t+2=\left(t^2-2.t.\frac{3}{2}+\frac{9}{4}\right)-\frac{9}{4}+2\)
\(=\left(t-\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
Dấu "=" xảy ra <=> \(t=\frac{3}{2}\)( tm)
khi đó: \(\left|2x-1\right|=\frac{3}{2}\Leftrightarrow\orbr{\begin{cases}2x-1=\frac{3}{2}\\2x-1=-\frac{3}{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{3}{4}\\x=-\frac{1}{4}\end{cases}}\)
Vậy min M = -1/4 <=> x =3/4 hoặc x =- 1/4
Cho biểu thức: \(M=\left(\frac{\left(a-1\right)^2}{31+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right):\frac{a^3+4a}{4a^2}\)
a) Rút gọn M
b) Tìm a để M > 0
c) Tìm giá trị của a để biểu thức M đạt giá trị lớn nhất. Tìm giá trị nhỏ nhất đó
Tìm giá trị của m để biểu thức A=m^2-m+1 đạt giá trị nhỏ nhất. tính giá trị nhỏ nhất đó
các anh chị ơi các anh chị giúp em nhé tí nữa là em đi học rồi nha
A= m2-m+1= m2-2m.1/2 +(1/2)2-(1/2)2 +1=(m-1/2)2 +5/4 lớn hơn hoặc = 5/4
do đó A nhỏ nhất khi bằng 5/4
=> (m-1/2)2+5/4 = 5/4
=>(m-1/2)2=0
=>m-1/2=0
=> m=1/2
nếu đúng thì k cho mình nka
Tìm giá trị của m để biểu thức A=m2-m+1. Tìm giá trị nhỏ nhất
ta thấy:m2\(\ge\)0
=>m2-m\(\ge\)0-m
=>m2-m+1\(\ge\)-m+1
=>A\(\ge\)-m+1
vậy Amin=3 khi m=0