Những câu hỏi liên quan
KCLH Kedokatoji
Xem chi tiết
tth_new
20 tháng 10 2020 lúc 15:54

1111111111111111111

\(VT=\Sigma\frac{xy+yz+zx}{xy}=3+\Sigma\frac{z\left(x+y\right)}{xy}\)

Đến đây để ý \(\frac{1}{2}\left[\frac{z\left(x+y\right)}{xy}+\frac{y\left(z+x\right)}{zx}\right]\ge\sqrt{\frac{\left(z+x\right)\left(x+y\right)}{x^2}}\left(\text{AM - GM}\right)\)

Là xong.

Khách vãng lai đã xóa
Nguyễn Thị Thùy
Xem chi tiết
Nguyễn Tất Đạt
Xem chi tiết
Thắng Nguyễn
1 tháng 8 2018 lúc 21:17

Áp dụng BĐT Mincopxki ta có:

\(VT=\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+xz+x^2}\)

\(=\sqrt{\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}}+\sqrt{\left(y+\frac{z}{2}\right)^2+\frac{3z^2}{4}}+\sqrt{\left(x+\frac{z}{2}\right)^2+\frac{3z^2}{4}}\)

\(\ge\sqrt{\left(x+y+z+\frac{x+y+z}{2}\right)^2+\left(\frac{\sqrt{3}\left(x+y+z\right)}{2}\right)^2}\)

\(=\sqrt{\frac{9\left(x+y+z\right)^2}{4}+\frac{3\left(x+y+z\right)^2}{4}}\)

\(=\sqrt{3\left(x+y+z\right)^2}=\sqrt{3}\left(x+y+z\right)=VP\)

Y
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 2 2019 lúc 20:46

Sửa lại đề: cho x, y, z dương thỏa mãn \(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}=1\)

Chứng minh \(A=\dfrac{x}{\sqrt{yz\left(1+x^2\right)}}+\dfrac{y}{\sqrt{xz\left(1+y^2\right)}}+\dfrac{z}{\sqrt{xy\left(1+z^2\right)}}\le\dfrac{3}{2}\)

Giải:

Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y};c=\dfrac{1}{z}\Rightarrow ab+bc+ac=1\)

\(\Rightarrow A=\dfrac{\dfrac{1}{a}}{\sqrt{\dfrac{1}{bc}\left(1+\dfrac{1}{a^2}\right)}}+\dfrac{\dfrac{1}{b}}{\sqrt{\dfrac{1}{ac}\left(1+\dfrac{1}{b^2}\right)}}+\dfrac{\dfrac{1}{a}}{\sqrt{\dfrac{1}{ab}\left(1+\dfrac{1}{c^2}\right)}}\)

\(\Rightarrow A=\sqrt{\dfrac{bc}{a^2+1}}+\sqrt{\dfrac{ac}{b^2+1}}+\sqrt{\dfrac{ab}{c^2+1}}\)

\(\Rightarrow A=\sqrt{\dfrac{bc}{a^2+ab+bc+ac}}+\sqrt{\dfrac{ac}{b^2+ab+bc+ac}}+\sqrt{\dfrac{ab}{c^2+ab+bc+ac}}\)

\(\Rightarrow A=\sqrt{\dfrac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{ac}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}\)

\(\Rightarrow A\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{c}{a+c}+\dfrac{a}{a+b}+\dfrac{c}{b+c}+\dfrac{a}{a+c}+\dfrac{b}{b+c}\right)\)

\(\Rightarrow A\le\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{a+c}{a+c}\right)=\dfrac{3}{2}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{\sqrt{3}}{3}\) hay \(x=y=z=\sqrt{3}\)

Nguyễn Việt Lâm
21 tháng 2 2019 lúc 20:28

Đề bài này có rất nhiều vấn đề, đầu tiên không có điều kiện x, y, z gì cả? Dương? Â? Bằng 0? Khác 0?

Sau nữa là chiều của BĐT cũng có vấn đề nốt, mình thử với \(x=y=2;z=\dfrac{4}{3}\) thì vế trái ra \(\dfrac{2+\sqrt{30}}{5}\) mà theo casio cho biết thì số này nhỏ hơn \(\dfrac{3}{2}\) , vậy BĐT cũng sai luôn

Y
21 tháng 2 2019 lúc 20:32

nhầm nha: x, y, z > 0leu

Nguyễn Thiều Công Thành
Xem chi tiết
đức trung okay
26 tháng 8 2017 lúc 6:24

KON 'NICHIWA ON" NANOKO: chào cô

Nguyen Duy Dai
Xem chi tiết
Lê Song Phương
Xem chi tiết
Nguyễn Đức Trí
20 tháng 8 2023 lúc 10:21

Áp dụng BĐT Cauchy cho cặp số dương \(\dfrac{1}{\left(z+x\right)};\dfrac{1}{\left(z+y\right)}\)

\(\dfrac{1}{\left(z+x\right)}+\dfrac{1}{\left(z+y\right)}\ge\dfrac{1}{2}.\dfrac{1}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\)

\(\Rightarrow\dfrac{xy}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\le\dfrac{2xy}{z+x}+\dfrac{2xy}{z+y}\left(1\right)\)

Tương tự ta được

\(\dfrac{zx}{\sqrt[]{\left(y+z\right)\left(y+x\right)}}\le\dfrac{2zx}{y+z}+\dfrac{2zx}{y+x}\left(2\right)\)

\(\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}\left(3\right)\)

\(\left(1\right)+\left(2\right)+\left(3\right)\) ta được :

\(P=\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}+\dfrac{zx}{\sqrt[]{\left(y+z\right)\left(y+x\right)}}+\dfrac{xy}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}+\dfrac{2zx}{y+z}+\dfrac{2zx}{y+x}+\dfrac{2xy}{z+x}+\dfrac{2xy}{z+y}\)

\(\Rightarrow P\le2\left(x+y+z\right)=2.3=6\)

\(\Rightarrow GTLN\left(P\right)=6\left(tạix=y=z=1\right)\)

Thắng Nguyễn
Xem chi tiết
Tuấn
1 tháng 8 2016 lúc 22:06

ta sử dụng bđt :\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)(dk mọi abcd)
cái này cm dễ thôi. bunhia nha
ĐĂT :\(A=\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+zx+x^2}\)
\(\Rightarrow A=\sqrt{\left(x+\frac{y}{2}\right)^2+\left(\frac{y\sqrt{3}}{2}\right)^2}+\sqrt{\left(y+\frac{z}{2}\right)^2+\left(\frac{z\sqrt{3}}{2}\right)^2}+\sqrt{\left(z+\frac{x}{2}\right)^2+\left(\frac{x\sqrt{3}}{2}\right)^2}\)
Áp dingj bđt trên ta được \(A\ge\sqrt{\left(x+\frac{y}{2}+y+\frac{z}{2}+z+\frac{x}{2}\right)^2+\left(\frac{x\sqrt{3}}{2}+\frac{y\sqrt{3}}{2}+\frac{z\sqrt{3}}{2}\right)^2}\)
\(\Rightarrow A\ge\sqrt{\frac{9}{4}\left(x+y+z\right)^2+\frac{3}{4}\left(x+y+z\right)^2}=\sqrt{3}\left(x+y+z\right)\)(dpcm)
Dấu = xảy ra khi và chỉ khi x=y=z

Mr Lazy
2 tháng 8 2016 lúc 9:37

\(\sqrt{x^2+xy+y^2}=\sqrt{\frac{3}{4}\left(x+y\right)^2+\frac{1}{4}\left(x-y\right)^2}\ge\sqrt{\frac{3}{4}\left(x+y\right)^2}=\frac{\sqrt{3}}{2}\left(x+y\right)\)

%Hz@
15 tháng 3 2020 lúc 8:50

cách khác

ÁP DỤNG BĐT Mincopxki

\(VT=\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+xz+x^2}\)

\(=\sqrt{\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}}+\sqrt{\left(y+\frac{z}{2}\right)^2+\frac{3z^2}{4}}+\sqrt{\left(x+\frac{z}{2}\right)^2+\frac{3z^2}{4}}\)

\(\ge\sqrt{\left(x+y+z+\frac{x+y+z}{2}\right)^2+\left(\frac{\sqrt{3}\left(x+y+z\right)}{2}\right)^2}\)

\(=\sqrt{\frac{9\left(x+y+z\right)^2}{4}+\frac{3\left(x+y+z\right)^2}{4}}\)

\(=\sqrt{3\left(x+y+z\right)^2}=\sqrt{3}\left(x+y+z\right)=VP\)

Khách vãng lai đã xóa
Lê Thái Dương
Xem chi tiết