Tìm số tự nhiên n để hai sô sau nguyên tố cùng nhau
n+2 và n+3
Giúp mình câu này vs ạ
Nhờ AD duyệt, ace hỗ trợ giải giúp câu sau ạ, xin cảm ơn ạ
Chứng tỏ hai số 3n+2 và 2n+1 là hai nguyên tố cùng nhau với mọi số tự nhiên n
Gọi d là \(ƯCLN\left(3n+2,2n+1\right)\)
Ta có : 2n+ 1 chia hết cho d ,3n+2 chia hết cho d
\(3\left(2n+1\right)-2\left(3n+2\right)\)chia hết cho
1 chia hết cho d
\(d=1\)
Vậy \(3n+2;2n+1\)là số nguyên tố cùng nhau với mọi số tự nhiên n
TL
Gọi d là ƯCLN(2n+1, 3n+2)
Ta có: 2n+1 chia hết cho d, 3n+2 chia hết cho d
=> 2(3n+2) - 3(2n+1) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 2n+1 và 3n+2 là 2 số nguyên tố cùng nhau
HỌC TỐT Ạ
B1:
a) Chứng tỏ rằng 5n+7 và 15n+20(n thuộc N) là 2 số nguyên tố cùng nhau?
b) Tìm số tự nhiên n để 5n+3 chia hết cho 6?
B2:
Tìm số tự nhiên n nhỏ nhất để các số sau đều là số nguyên tố:
n+1;n+3;n+7;n+9
P/S:Trình bày bài giải giúp mình nhé
Bài 8: Tìm số tự nhiên a lớn nhất biết rằng 428 và 708 chia cho 9 đều có số dư là 8
Bài 9: Tìm số tự nhiên n để hai số sau nguyên tố cùng nhau:
a) n +2 và n+ 3 ;
b) 2 n+1 và 9n+4
giúp tui i mn oiiiiiiiiiiiiiiiiiiiiiiiiiiii
a/ Tìm số tự nhiên n > 1 sao cho:
n + 8 chia hết cho n + 2
b/ Tìm số tự nhiên n để hai số sau nguyên tố cùng nhau:
9n + 11 và 12n + 15
a: \(\Leftrightarrow n+2=6\)
hay n=4
a) \(\left(n+2\right)+6⋮\left(n+2\right)\Rightarrow\left(n+2\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(n\in\) N*, n>1 \(\Rightarrow n\in\left\{4\right\}\)
b) Gọi d là \(UCLN\left(9n+11;12n+15\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\left(9n+11\right)⋮d\\\left(12n+15\right)⋮d\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(36n+44\right)⋮d\\\left(36n+45\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(36n+45\right)-\left(36n+44\right)⋮d\Rightarrow1⋮d\Rightarrowđpcm\)
Vậy 2 số trên luôn là 2 số nguyên tố cùng nhau
Tìm số tự nhiên n để n+1 và 7n+4 là 2 số nguyên tố cùng nhau.
GIÚP MÌNH VỚI MỌI NGƯỜI ƠI
Đặt d = ( n + 1; 7n + 4 )
Ta có: \(\hept{\begin{cases}7n+4⋮d\\n+1⋮d\end{cases}}\Rightarrow\hept{\begin{cases}7n+4⋮d\\7n+7=7\left(n+1\right)⋮d\end{cases}}\Rightarrow\left(7n+7\right)-\left(7n+4\right)⋮d\)
=> \(3⋮d\Rightarrow d\in\left\{1;3\right\}\)=> d có thể bằng 3 hoặc bằng 1
Với d = 3 ta có: \(\hept{\begin{cases}7n+4⋮3\\n+1⋮3\end{cases}}\Rightarrow\hept{\begin{cases}7n+4⋮3\\6n+6=6\left(n+1\right)⋮3\end{cases}}\Rightarrow\left(7n+4\right)-\left(6n+6\right)⋮3\)
=> \(n-2⋮3\)
=> Tồn tại số tự nhiên k sao cho : n - 2 = 3k => n = 3k + 2
=> n khác 3k + 2 thì d khác 3
hay n khác 3k + 2 thì d = 1
=> n khác 3k + 2 thì n + 1 và 7n + 4 là hai số nguyên tố cùng nhau.
Câu 1
a) Chứng tỏ n+3 và n+2 là hai số nguyên tố cùng nhau
b) Tìm số nguyên n để n+3/n-2 là số nguyên
Gúp mình, mình tích cho☺
\(a.d=UCLN\left(n+2,n+3\right)\\ \left\{{}\begin{matrix}n+2⋮d\\n+3⋮d\end{matrix}\right.\Rightarrow\left(n+3\right)-\left(n+2\right)=1⋮d\)
Mà chỉ có 1⋮1 ⇒n+2, n+3 nguyên tố cùng nhau
\(b.d=UCLN\left(n-2,n+3\right)\\ \left\{{}\begin{matrix}n-2⋮d\\n+3⋮d\end{matrix}\right.\Rightarrow\left(n+3\right)-\left(n-2\right)=5⋮d\)
Mà\(\dfrac{n+3}{n-2}\)là số nguyên ⇒d ϵ\(\left\{5,-5\right\}\)
Thử từng trường hợp nhé!
Tích mình nhoaa!
các bạn giúp mình với
tìm số tự nhiên n để n+2 và 3n +11 nguyên tố cùng nhau
và 3(n+7) chia hết cho 5 thì n có dạng là gì?
Mấy bài này khó quá,bạn nào giải được mình xin cảm ơn nha :
Bài 1 : Cho a là số tự nhiên lẻ, b là một số tự nhiên. Chứng minh rằng các số:
a) a và ab+4 là 2 số nguyên tố cùng nhau
b)Tìm n để n+2 và 3n+11 là 2 số nguyên tố cùng nhau (n là số tự nhiên)
Bài 2: Chứng minh rằng : S=1+3+5+.........+ (2n-1) (n thuộc N*) là số chính phương .
1. Nhận xét rằng a là số tự nhiên lẻ và ab + 4 là một số chẵn.
Nếu d là một ước chung của a và ab + 4 ( d > 1), thì do a lẻ nên d phải là số lẻ.
Do ab chia hết cho d nên 4 chia hết cho d, suy ra d \(\in\) { 2; 4 }. (mâu thuẫn)..
b) Gọi d là ước chung lớn nhất của n + 2 và 3n + 11.
Suy ra \(\hept{\begin{cases}n+2⋮d\\3n+11⋮d\end{cases}\Rightarrow\hept{\begin{cases}3n+6⋮d\\3n+11⋮d\end{cases}}}\).
Suy ra \(3n+11-\left(3n+6\right)=5⋮d\).
Vì vậy d = 1 hoặc d = 5.
Để n + 2 và 3n + 11 là hai số nguyên tố cùng nhau thì d = 1.
Nếu giả sử ngược lại \(\hept{\begin{cases}n+2⋮5\\3n+11⋮5\end{cases}}\) \(\Leftrightarrow n+2⋮5\).
Suy ra \(n\) chia 5 dư 3 hay n = 5k + 3.
Vậy để n + 2 và 3n + 11 là hai số nguyên tố cùng nhau, thì n chia cho 5 dư 0, 1, 2, 4 hay n = 5k, n = 5k +1, n = 5k + 2, n = 5k + 4.
Số các số hạng của S là: \(\frac{\left(2n-1-1\right)}{2}+1=n-1+1=n\).
S = 1 + 3 + 5 + ........ (2n - 1)
\(=\frac{\left(2n-1+1\right).n}{2}=n.n=n^2\).
Suy ra S là một số chính phương.
Tìm số tự nhiên n để 2.n+1 và 7.n+2 là hai số nguyên tố cùng nhau.
mình chỉ chứng minh đc thui thông cảm <3