Tìm \(n\in Z\) sao cho :
\(4n-5⋮2n-1\)
Tìm n ϵ Z sao cho n là số nguyên
\(\dfrac{2n-1}{n-1};\dfrac{3n+5}{n+1};\dfrac{4n-2}{n+3};\dfrac{6n-4}{3n+4};\dfrac{n+3}{2n-1};\dfrac{6n-4}{3n-2};\dfrac{2n+3}{3n-1};\dfrac{4n+3}{3n+2}\)
Tìm n thuộc In sao cho 4n-5 chia hết cho 2n-1
kiểm tra giúp mình
\(\frac{4n-5}{2n-1}=\frac{2\left(2n-1\right)-3}{2n-1}=2-\frac{3}{2n-1}\)
Vậy để 4n-5 chia hết cho 2n-1 thì \(2n-1\inƯ\left(3\right)\)
Mà Ư(3)={-1;1;3;-3}
+)2n-1=1 <=> n=1
+)2n-1=-1 <=> n=0
+)2n-1=3 <=> n=2
+)2n-1=-3 <=> n=-1
Vậy n={-1;0;1;2}
\(\frac{4n-5}{2n-1}=\frac{2\left(2n-1\right)}{2n-1}=\frac{2\left(2n-1\right)-3}{2n-1}=\frac{2\left(2n-1\right)}{2n-1}-\frac{3}{2n-1}=2-\frac{3}{2n-1}\in Z\)
\(\Rightarrow3⋮2n-1\)
\(\Rightarrow2n-1\inƯ\left(3\right)=\left\{1;3\right\}\left(n\in N\right)\)
\(\Rightarrow2n\in\left\{2;4\right\}\)
\(\Rightarrow n\in\left\{1;2\right\}\)
Tìm \(n\in Z\) biết 4n-5 chia hết cho 2n-1
<=>2n + 2n - 1 - 1 - 3 C/H 2n - 1
<=> ( 2n - 1 ) + ( 2n - 1 ) - 3 C/H 2n - 1
Vì 2n - 1 C/H 2n - 1 . Để ( 2n - 1 ) + ( 2n - 1 ) - 3 C/H 2n - 1 <=> 3 C/H 2n - 1
=> 2n - 1 thuộc ước 3
Ư ( 3 ) = { + 1 ; + 3 }
Ta có : 2n - 1 = 1 <=> 2n = 2 => n = 1 ( TM )
2n - 1 = - 1 <=> 2n = 0 => n = 0 ( TM )
2n - 1 = 3 <=> 2n = 4 => n = 2 ( TM )
2n - 1 = -3 <=> 2n = - 2 => n = - 1 ( TM )
Vậy n = { - 1 ; 0 ; 1 ; 2 }
TÌM n thuộc Z sao cho
a)4n-5 chia hết cho n
b)-11 chia hết cho n-1
c)2n-1 là ước của 3n+2
Tìm n thuộc Z để:
a, 15:(2n+3) thuộc Z b, 11:(4n-4) thuộc Z c, 3n+5:(3n+1) thuộc Z
*d, n+1:(2n+1) thuộc Z
Câu khó mình đã đánh dấu sao vào mong các bạn giúp mình nhé, cảm ơn
d) Để \(\dfrac{n+1}{2n+1}\in Z\) thì \(n+1⋮2n+1\)
\(\Leftrightarrow1⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow2n\in\left\{0;-2\right\}\)
hay \(n\in\left\{0;-1\right\}\)
Mk trả lời mỗi câu khó nha!!!
d*) \(\dfrac{n+1}{2n+1}\in Z\)
Để \(\dfrac{n+1}{2n+1}\in Z\) thì \(n+1⋮2n+1\)
\(n+1⋮2n+1\)
\(\Rightarrow2.\left(n+1\right)⋮2n+1\)
\(\Rightarrow2n+2⋮2n+1\)
\(\Rightarrow2n+1+1⋮2n+1\)
\(\Rightarrow1⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta có bảng giá trị:
2n+1 | -1 | 1 |
n | -1 | 0 |
Vậy \(n\in\left\{-1;0\right\}\)
Cho Biểu Thức : \(A=\dfrac{2n+1}{n-3}+\dfrac{3n-5}{n-3}-\dfrac{4n-5}{n-3}\left(n\in Z,n\ne3\right)\)
a) Tìm n để A nhận giá trị nguyên
b) Tìm n để A là p/s tối giản
.
a, \(A=\dfrac{5n-4-4n+5}{n-3}=\dfrac{n+1}{n-3}=\dfrac{n-3+4}{n-3}=1+\dfrac{4}{n-3}\Rightarrow n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n-3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 4 | 2 | 5 | 1 | 7 | -1 |
a.\(A=\dfrac{2n+1}{n-3}+\dfrac{3n-5}{n-3}-\dfrac{4n-5}{n-3}\)
\(A=\dfrac{2n+1+3n-5-4n+5}{n-3}\)
\(A=\dfrac{n+1}{n-3}\)
\(A=\dfrac{n-3}{n-3}+\dfrac{4}{n-3}\)
\(A=1+\dfrac{4}{n-3}\)
Để A nguyên thì \(\dfrac{4}{n-3}\in Z\) hay \(n-3\in U\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n-3=1 --> n=4
n-3=-1 --> n=2
n-3=2 --> n=5
n-3=-2 --> n=1
n-3=4 --> n=7
n-3=-4 --> n=-1
Vậy \(n=\left\{4;2;5;7;1;-1\right\}\) thì A nhận giá trị nguyên
b.hemm bt lèm:vv
Tìm n\(\in\)Z biết :
a,n + 5 chia hết cho n - 2
b, 4n + 3 chai hết cho 2n - 6
c, 2n + 7 chai hết cho n + 1
d, n + 2 chai hết cho n - 1
Tìm n ϵ Z sao cho:
a) 25 chia hết cho n + 2
b) 2n + 4 chia hết cho n - 1
c) 1 - 4n chia hết cho n + 3
a) \(25⋮n+2\left(n\in Z\right)\)
\(\Rightarrow n+2\in\left\{-1;1;-5;5;-25;25\right\}\)
\(\Rightarrow n\in\left\{-3;-1;-7;3;-27;23\right\}\)
b) \(2n+4⋮n-1\)
\(\Rightarrow2n+4-2\left(n-1\right)⋮n-1\)
\(\Rightarrow2n+4-2n+2⋮n-1\)
\(\Rightarrow6⋮n-1\)
\(\Rightarrow n-1\in\left\{-1;1;-2;2;-3;3;-6;6\right\}\)
\(\Rightarrow n\in\left\{0;2;-1;3;-2;4;-5;7\right\}\)
c) \(1-4n⋮n+3\)
\(\Rightarrow1-4n+4\left(n+3\right)⋮n+3\)
\(\Rightarrow1-4n+4n+12⋮n+3\)
\(\Rightarrow13⋮n+3\)
\(\Rightarrow n+3\in\left\{-1;1;-13;13\right\}\)
\(\Rightarrow n\in\left\{-4;-2;-15;10\right\}\)
a) n ϵ{−3;−1;−7;3;−27;23}
b) n ∈{0;2;−1;3;−2;4;−5;7}
c) n ϵ {−4;−2;−15;10}
Tìm \(n\in Z\)biết
a) 4n - 5 chia hết cho n
b) -11 là bội của n -1
c) 2n-1 là ước của 3n-2