tìm m để hàm số y = -x^3 + 3mx^2 - 2 luôn nghịc biến R
A. m = 0.
B. m > 0.
C. m ≠ 0.
D. M < 0.
Tìm giá trị của tham số m để các hàm số y = x 3 - 2m x 2 + 12x - 7 đồng biến trên R.
A. m = 4 B. m ∈ (0; ∞ )
C. m ∈ (- ∞ ; 0) D. -3 ≤ m ≤ 3
Đáp án: D.
Hàm số đồng biến trên tập xác định R khi và chỉ khi
y' = 3 x 2 - 4mx + 12 ≥ 0, ∀ x ⇔ ∆ ' = 4m2 - 36 ≤ 0 ⇔ -3 ≤ m ≤ 3.
Tìm giá trị của tham số m để các hàm số y = x 3 - 2m x 2 + 12x - 7 đồng biến trên R.
A. m = 4 B. m ∈ (0; ∞ )
C. m ∈ ( - ∞ ; 0) D. -3 ≤ m ≤ 3
Đáp án: D.
Hàm số đồng biến trên tập xác định R khi và chỉ khi
y' = 3 x 2 - 4mx + 12 ≥ 0, ∀x ⇔ Δ' = 4 m 2 - 36 ≤ 0 ⇔ -3 ≤ m ≤ 3.
Cho y=\(\frac{1}{3}mx^3-\left(m-1\right)x^2-3\left(m-2\right)x+\frac{1}{3}\)
a. Tìm m để hàm số đồng biến trên R
b. Tìm m để hàm số nghịch biến trên R
c. Tìm m để hàm số có 2 cực trị
d. Tìm m để hàm số có 2 cực trị x1,x2 sao cho x1+3x2=1
e. Tìm m để hàm số nghịch biến trên đoạn có độ dài bằng 1 (khi m>0)
Theo mình:
để hàm số đồng biến, đk cần là y'=0.
a>0 và \(\Delta'< 0\)
nghịch biến thì a<0
vì denta<0 thì hầm số cùng dấu với a
mình giải được câu a với b
câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb)
câu d dùng viet
câu e mình chưa chắc lắm ^^
Cho hàm số y=(m-2)x+1, điều kiện của tham số m để hàm số nghịch biến trên R là: A. 2 B. m2 D. m=0
Hàm nghịch biến trên R khi và chỉ khi:
\(m-2< 0\)
\(\Rightarrow m< 2\)
Tìm m để hàm số y = - x 3 + 3 x 2 + 3 m x + m - 1 nghịch biến trên khoảng ( 0 ; + ∞ )
A. m > - 1
B. m ≤ - 1
C. m ≤ 1
D. m < 1
Bài 1 : tìm các giá trị của m để phương trình có nghiệm kép : A. 3x² - 2mx + 1 = 0 B. 4mx² - 6x - m-3 = 0 C. (m+2) x² - 2 (m-1) x + 4 = 0 D. (m-6) x² + 3mx - 2 = 0
a: Δ=(-2m)^2-4*3*1=4m^2-12
Để phương trình có nghiệm kép thì 4m^2-12=0
=>m^2=3
=>\(m=\pm\sqrt{3}\)
b:
TH1: m=0
=>-6x-3=0
=>x=-1/2(nhận)
TH2: m<>0
Δ=(-6)^2-4*4m*(-m-3)
=36-16m(-m-3)
=36+16m^2+48m
=16m^2+48m+36
Để phương trình có nghiệm kép thì 16m^2+48m+36=0
=>m=-3/2
c: TH1: m=-2
=>-2(-2-1)x+4=0
=>6x+4=0
=>x=-2/3(nhận)
TH2: m<>-2
Δ=(2m-2)^2-4(m+2)*4
=4m^2-16m+4-16m-32
=4m^2-32m-28
Để pt có nghiệm kép thì 4m^2-32m-28=0
=>\(m=\dfrac{16\pm6\sqrt{11}}{5}\)
d: TH1: m=6
=>18x-2=0
=>x=1/9(nhận)
TH2: m<>6
Δ=(3m)^2-4*(-2)(m-6)
=9m^2+8m-48
Để pt có nghiệm kép thì 9m^2+8m-48=0
=>\(m=\dfrac{-4\pm8\sqrt{7}}{9}\)
Tìm m thuộc R để đồ thị hàm số y= (3-x)/ (2x+2m) có tiệm cận đứng là đường thẳng đi qua A(2:0)
A. m=1.
B. m= - 2.
C.m=− 1.
D. m=0.
Lời giải:
Theo đề thì cần tìm $m$ để đths đã cho cho TCĐ $x=2$
Điều này xảy ra khi mà $2x+2m=0$ tại $x=2$
$\Leftrightarrow m=-x=-2$
Đáp án B.
1. Cho hàm số \(y=x^3-3mx^2+3\left(2m-1\right)x+1\) . Với giá trị nào của m thì \(f'\left(x\right)-6x>0\) với mọi x>2
A. m > 1/2 B. m < -1/2 C. m >1 D. m ≤ 0
2. Cho hai hàm số f(x) và g(x) đều có đạo hàm trên R và thỏa mãn :
\(f^3\left(2-x\right)-2f^2\left(2+3x\right)+x^2g\left(x\right)+36x=0\) với mọi x thuộc R.
Tính \(A=3f\left(2\right)+4f'\left(2\right)\)
3. Biết hàm số f(x) - f(2x) có đạo hàm bằng 18 tại x=1 và đạo hàm bằng 2000 tại x=2. Tính đạo hàm của hàm số f(x) - f(4x) tại x=1
1.
\(f'\left(x\right)=3x^2-6mx+3\left(2m-1\right)\)
\(f'\left(x\right)-6x=3x^2-3.2\left(m+1\right)x+3\left(2m-1\right)>0\)
\(\Leftrightarrow x^2-2\left(m+1\right)x+2m-1>0\)
\(\Leftrightarrow x^2-2x-1>2m\left(x-1\right)\)
Do \(x>2\Rightarrow x-1>0\) nên BPT tương đương:
\(\dfrac{x^2-2x-1}{x-1}>2m\Leftrightarrow\dfrac{\left(x-1\right)^2-2}{x-1}>2m\)
Đặt \(t=x-1>1\Rightarrow\dfrac{t^2-2}{t}>2m\Leftrightarrow f\left(t\right)=t-\dfrac{2}{t}>2m\)
Xét hàm \(f\left(t\right)\) với \(t>1\) : \(f'\left(t\right)=1+\dfrac{2}{t^2}>0\) ; \(\forall t\Rightarrow f\left(t\right)\) đồng biến
\(\Rightarrow f\left(t\right)>f\left(1\right)=-1\Rightarrow\) BPT đúng với mọi \(t>1\) khi \(2m< -1\Rightarrow m< -\dfrac{1}{2}\)
2.
Thay \(x=0\) vào giả thiết:
\(f^3\left(2\right)-2f^2\left(2\right)=0\Leftrightarrow f^2\left(2\right)\left[f\left(2\right)-2\right]=0\Rightarrow\left[{}\begin{matrix}f\left(2\right)=0\\f\left(2\right)=2\end{matrix}\right.\)
Đạo hàm 2 vế giả thiết:
\(-3f^2\left(2-x\right).f'\left(2-x\right)-12f\left(2+3x\right).f'\left(2+3x\right)+2x.g\left(x\right)+x^2.g'\left(x\right)+36=0\) (1)
Thế \(x=0\) vào (1) ta được:
\(-3f^2\left(2\right).f'\left(2\right)-12f\left(2\right).f'\left(2\right)+36=0\)
\(\Leftrightarrow f^2\left(2\right).f'\left(2\right)+4f\left(2\right).f'\left(2\right)-12=0\) (2)
Với \(f\left(2\right)=0\) thế vào (2) \(\Rightarrow-12=0\) ko thỏa mãn (loại)
\(\Rightarrow f\left(2\right)=2\)
Thế vào (2):
\(4f'\left(2\right)+8f'\left(2\right)-12=0\Leftrightarrow f'\left(2\right)=1\)
\(\Rightarrow A=3.2+4.1\)
3.
Đặt \(g\left(x\right)=f\left(x\right)-f\left(2x\right)\)
\(\Rightarrow g'\left(x\right)=f'\left(x\right)-2f'\left(2x\right)\)
Thay \(x=1\Rightarrow18=f'\left(1\right)-2f'\left(2\right)\) (1)
Thay \(x=2\Rightarrow2000=f'\left(2\right)-2f'\left(4\right)\Rightarrow4000=2f'\left(2\right)-4f'\left(4\right)\) (2)
Cộng vế (1) và (2):
\(f'\left(1\right)-4f'\left(4\right)=4018\)
Đặt \(h\left(x\right)=f\left(x\right)-f\left(4x\right)\Rightarrow h'\left(x\right)=f'\left(x\right)-4f'\left(4x\right)\)
Thay \(x=1\Rightarrow h'\left(1\right)=f'\left(1\right)-4f'\left(4\right)=4018\)
Cho hàm số \(y=-x^3+3x^2+3mx-1\left(1\right)\), với m là tham số thực. Tìm m để hàm số (1) nghịch biến trên khoảng (\(0;+\infty\))
Ta có \(y'=-3x^2+6x+3m\) \(\Rightarrow\) hàm số nghịch biến trên khoảng \(\left(0;+\infty\right)\)\(\Leftrightarrow y'\le0\)
với mọi \(x\in\left(0;+\infty\right)\) (*)
Vì \(y'\left(x\right)\) liên tục tại x=0 nên (*)
\(\Leftrightarrow y'\le0\)với mọi \(x\in\)[0;\(+\infty\))
\(\Leftrightarrow-3x^2+6x+3m\le0\) với mọi \(x\in\)[0;\(+\infty\))
\(\Leftrightarrow m\le x^2-2x\), với mọi \(x\in\)[0;\(+\infty\))\(\Leftrightarrow m\le g\left(x\right);\)với mọi \(x\in\)[0;\(+\infty\)) (Trong đó \(g\left(x\right)=x^2-2x\)
\(\Leftrightarrow m\le Min_{\left(0;+\infty\right)}g\left(x\right)\)
Xét hàm số \(g\left(x\right)=x^2-2x\) trên với mọi \(x\in\)[0;\(+\infty\))\(\Rightarrow g'\left(x\right)=2x-2\Rightarrow g'\left(x\right)=0\Leftrightarrow x=1\)
\(\lim\limits_{x\rightarrow+\infty}g\left(x\right)=+\infty;g\left(0\right)=0;g\left(1\right)=-1\)\(\Rightarrow Min_{\left(0;+\infty\right)}g\left(x\right)=-1\) tại x=1
Vậy \(m\le-1\) thì hàm số nghịch biến trên khoảng \(\left(0;+\infty\right)\)