x,y nguyên dương thoả mãn x^2+y^2+4=2xy+4x+4y .chứng minh x/2 và y/2 là các số chính phương
CHO CÁC SỐ NGUYÊN DƯƠNG X Y THỎA MÃN ĐIỀU KIỆN X²+y²+2xy-4x-2y+1=0.Chứng minh rằng x là số chẵn và x:2 là số chính phương
Ta có: x2+y2+2xy-4x-2y+1=0
⇔(x2+y2+2xy-2x-2y+1)-2x=0
⇔(x+y-1)2=2x
Mà (x+y-1)2 là số chính phương
⇒2x là số chính phương
⇒2x chia 4 dư 0 hoặc 1
Mà 2x là số chẵn
⇒2x chia hết cho 4
⇒x chia hết cho 2
⇒x là số chẵn(đpcm)
Lại có:(x+y-1)2=2x
⇒\(\dfrac{\left(x+y-1\right)^2}{2}\)=x
⇒\(\dfrac{\left(x+y-1\right)^2}{2}\): 2=x:2
⇒\(\dfrac{\left(x+y-1\right)^2}{2}\). \(\dfrac{1}{2}\) =x:2
⇒\(\dfrac{\left(x+y-1\right)^2}{4}\)=x:2
⇒(\(\dfrac{x+y-1}{2}\))2=x:2
Mà \(\left(\dfrac{x+y-1}{2}\right)^2\) là số chính phương
⇒x:2 là số chính phương (đpcm)
Cho các số nguyên dương thỏa mãn điều kiện x²+y²+2xy-4x-2y+1=0. Chứng minh rằng x là số chắn và x:2 là số chính phương
Cho các số nguyên dương các x,ý thoả mãn điều kiện x²+ y²+2xy _4x_2y+1=0
Chứng minh x là số chẵn và x:2 là số chính phưong
Cho 2 số nguyên dương x,y thoả mãn (x+2y)^2+x+5y+1 là số chính phương. Chứng minh rằng x=y
Ta có: (2x+3y)2<(2x+3y)2+5x+5y+1<(2x+3y+2)2(2x+3y)2<(2x+3y)2+5x+5y+1<(2x+3y+2)2.
Do đó để (2x+3y)2+5x+5y+1(2x+3y)2+5x+5y+1 là số chính phương thì (2x+3y)2+5x+5y+1=(2x+3y+1)2⇔x=y(2x+3y)2+5x+5y+1=(2x+3y+1)2⇔x=y.
Vậy x = y
-game là dễ
Ta có: (2x+3y)2<(2x+3y)2+5x+5y+1<(2x+3y+2)2(2x+3y)2<(2x+3y)2+5x+5y+1<(2x+3y+2)2.
Do đó để (2x+3y)2+5x+5y+1(2x+3y)2+5x+5y+1 là số chính phương thì (2x+3y)2+5x+5y+1=(2x+3y+1)2⇔x=y(2x+3y)2+5x+5y+1=(2x+3y+1)2⇔x=y.
Vậy x = y
-Tham khảo:
https://hoc24.vn/cau-hoi/cho-cac-so-nguyen-duong-x-y-thoa-man-2x3y25x5y1-la-so-chinh-phuong-chung-minh-rang-xy.333530218330
a) Cho các số thực dương x, y thoả mãn y ^ 2 + 2xy >= 29 - 4x chứng minh rằng 2x + 3y + 4/x + 18/y >= 21
Từ giả thiết:
\(29\le y^2+2xy+4x\le y^2+2xy+x^2+4\)
\(\Rightarrow\left(x+y\right)^2\ge25\Rightarrow x+y\ge5\)
Đặt \(P=2x+3y+\dfrac{4}{x}+\dfrac{18}{y}\)
\(\Rightarrow P=x+y+\left(x+\dfrac{4}{x}\right)+2\left(y+\dfrac{9}{y}\right)\ge5+2\sqrt{\dfrac{4x}{x}}+2.2\sqrt{\dfrac{9y}{y}}=21\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(2;3\right)\)
Cho ba số nguyên dương \(x;y;z\) và số nguyên tố \(p\) thỏa mãn đồng thời các điều kiện \(x.y=z^2\) và \(2.p=x+y+6.z\). Chứng minh rằng \(p+4x\) và \(p+4y\) đều là số chính phương .
P/s: Em xin phép nhờ sự giúp đỡ của quý thầy cô giáo và các bạn yêu toán, em cám ơn rất nhiều ạ!
Tìm x,y nguyên dương thoả mãn x^2+8y và y^2+8x là các số chính phương
Không mất tính tổng quát ta giả sử \(x\ge y\)
Ta có:
\(x^2< x^2+8y\le x^2+8x< x^2+8x+16=\left(x+4\right)^2\)
\(\Rightarrow x^2+8y=\left(x+1\right)^2or\left(x+2\right)^2or\left(x+3\right)^2\)
PS: Vì e là CTV nên a chỉ gợi ý thôi nha. Phần còn lại e thử tự nghĩ xem sao nhé. A giải quyết cho e phần khó nhất rồi đấy :)
Anh Alibaba Nguyễn, giải tìm x ntn vậy, em mới tìm được y thôi
Mn giúp mình 2 câu này với
a)Tìm nghiệm nguyên của phương trình 2xy-y2-6x+4y=7
b)Cho x,y là các số nguyên dương sao cho x2+y2-x chia hết cho xy. Chứng minh x là số chính phương
a) \(2xy-y^2-6x+4y=7\)
\(\Leftrightarrow2xy-6x-y^2+3y+y-3=4\)
\(\Leftrightarrow\left(2x-y+1\right)\left(y-3\right)=4\)
Tới đây bạn xét bảng giá trị thu được nghiệm \(\left(x,y\right)\).
b) \(x^2+y^2-x⋮xy\Rightarrow x^2+y^2-x⋮x\Rightarrow y^2⋮x\).
Đặt \(y^2=kx,\left(k\inℤ\right),d=\left(x,k\right)\).
\(x^2+\left(kx\right)^2-x⋮xy\Rightarrow x+k^2x-1⋮y\).
suy ra \(x+k^2x-1⋮d\Rightarrow1⋮d\Rightarrow d=1\).
Do đó \(kx=y^2\)mà \(\left(k,x\right)=1\)nên \(x\)là số chính phương.
Bài 8. Cho số nguyên dương n. Tồn tại hay không số nguyên dương d thỏa mãn: d là ước của 3n^2 và n^2 +d là số chính phương. Bài 9. Chứng minh rằng không tồn tại hai số nguyên dương x, y thỏa mãn x^2 +y+1 và y^2 +4x+3 đều là số chính phương.
Ai đó giúp mình đi mòaa🤤🤤🤤