\(x^2+y^2+4=2xy+4x+4y\)
\(\Leftrightarrow x^2-\left(2y+4\right)x+y^2-4y+4=0\)
Xét phương trình theo nghiệm x.
\(\Rightarrow\Delta'=\left(y+2\right)^2-\left(y^2-4y+4\right)=8y\)
\(\Rightarrow\orbr{\begin{cases}x=y+2-2\sqrt{2y}\\x=y+2+2\sqrt{2y}\end{cases}}\)
Vì x, y nguyên dương nên
\(\Rightarrow\sqrt{2y}=a\)
\(\Rightarrow y=2n^2\)
\(\Rightarrow\orbr{\begin{cases}x=2n^2+2-4n\\x=2n^2+2+4n\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\left(n-1\right)^2\\x=2\left(n+1\right)^2\end{cases}}\)
Vậy \(\frac{y}{2};\frac{x}{2}\)là 2 số chính phương.
\(x^2+y^2+4=2xy+4x+4y\)
<=> \(\left(x^2-4x+4\right)+y^2-2y\left(x-2\right)=8y\)
<=> \(\left(x-y-2\right)^2=8y\)
<=> \(\left(\frac{x-y-2}{4}\right)^2=\frac{y}{2}\)
=> \(\frac{y}{2}\)là số chính phương
CMTT x/2 là số chính phương