Tìm Min:
\(A=\left(x^2-3x-5\right).\left(x^2-3x+5\right)\)
Tìm Min của: a)B=\(\left|3x-7\right|-\left|3x+2\right|+8\)
b)C=\(\left|X+2\right|+\left|2X+5\right|+\left|X-3\right|\)
\(B=\left|3x-7\right|-\left|3x+2\right|+8\)
Áp dụng tính chất:
\(\left|x\right|-\left|y\right|\le\left|x-y\right|\)
\(\left|3x-7\right|-\left|3x+2\right|\le\left|3x-7-3x-2\right|\)
\(B\le9+8=17\)
Dấu "=" xảy ra khi:
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}3x-7\ge0\Rightarrow3x\ge7\Rightarrow x\ge\dfrac{7}{3}\\3x+2\ge0\Rightarrow3x\ge-2\Rightarrow x\ge\dfrac{-2}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}3x-7< 0\Rightarrow3x< 7\Rightarrow x< \dfrac{7}{3}\\3x+2< 0\Rightarrow3x< -2\Rightarrow x< -\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\)
Vậy \(x\ge\dfrac{7}{3}\) hoặc \(x< -\dfrac{2}{3}\)
Tìm x:
a) \(3x\left(3x-8\right)-9x^2+8=0\)
b)\(6x-15-x\left(5-2x\right)=0\)
c) \(x^3-16x=0\)
d) \(2x^2+3x-5=0\)
e) \(3x^2-x\left(3x-6\right)=36\)
f) \(\left(x+2\right)^2-\left(x-5\right)\left(x+1\right)=17\)
g) \(\left(x-4\right)^2-x\left(x+6\right)=9\)
h) \(4x\left(x-1000\right)-x+1000=0\)
i) \(x^2-36=0\)
j) \(x^2y-2+x+x^2-2y+xy=0\)
k) \(x\left(x+1\right)-\left(x-1\right).\left(2x-3\right)=0\)
l) \(3x^3-27x=0\)
a) Tìm min : \(\left|x-5\right|+\left|x+6\right|\)
b) Tìm max : \(\left|3x-1\right|-\left(3x-1\right)^2\)
a)
\(!5-x!\ge5-x\) đẳng thức x<=5
\(!x+6!\ge x+6\) đẳng thức khi x>=-6
cộng lại: \(!x-5!+!x+6!\ge11\) khi -6<=x<=5
dùng cách khác
áp dụng tích chất trị tuyệt đối: \(!a!+!b!\ge!a+b!\) (*) cái này được dùng luôn cần c/m được nhưng không cần thiết nhớ được rồi. !a-b!=!b-a! (**)
áp (*)&(**) vào câu (a) \(!x-5!+!x+6!=!5-x!+!x+6!\ge!\left(5-x\right)+\left(x+6\right)!=!11!=11\)
Đẳng thức xẩy ra khi (5-x)(x+6)>=0 => -6<=x<=5
BT6: Thu gọn về hàng đẳng thức
\(3,\left(x+3\right)^2+\left(x-2\right)^2-2\left(x+3\right)\left(x-2\right)\)
\(4,\left(3x-5\right)^2-2\left(3x-5\right)\left(3x+5\right)+\left(3x+5\right)^2\)
3) \(\left(x+3\right)^2+\left(x-2\right)^2-2\left(x+3\right)\left(x-2\right)\)
\(=\left(x+3\right)^2-2\left(x+3\right)\left(x-2\right)+\left(x-2\right)^2\)
\(=\left[\left(x+3\right)-\left(x-2\right)\right]^2\)
\(=\left(x+3-x+2\right)^2\)
\(=5^2=25\)
4) \(\left(3x-5\right)^2-2\left(3x-5\right)\left(3x+5\right)+\left(3x+5\right)^2\)
\(=\left[\left(3x-5\right)-\left(3x+5\right)\right]^2\)
\(=\left(3x-5-3x-5\right)^2\)
\(=\left(-10\right)^2\)
\(=100\)
Rút gon biểu thức sau
a) \(\left(x-5\right)\left(2x+3\right)+2x\left(1-x\right)\)
b) \(\left(3x-5\right)^2-\left(x+5\right)\left(5-x\right)-\frac{5}{2}\left(-2x\right)^2\)
c) \(\left(3x+2\right)\left(4-6x+9x^2\right)-3x\left(3x-2\right)^2+12\left(-\frac{2}{3}-3x^2\right)\)
a) ( x - 5 )( 2x + 3 ) + 2x( 1 - x )
= 2x2 - 7x - 15 + 2x - 2x2
= -5x - 15
= -5( x + 3 )
b) ( 3x - 5 )2 - ( x + 5 )( 5 - x ) - 5/2( -2x )2
= 9x2 - 30x + 25 + ( x + 5 )( x - 5 ) - 5/2.4x2
= 9x2 - 30x + 25 + x2 - 25 - 10x2
= -30x
c) ( 3x + 2 )( 4 - 6x + 9x2 ) - 3x( 3x - 2 )2 + 12( -2/3 - 3x2 )
= ( 3x )3 + 23 - 3x( 9x2 - 12x + 4 ) - 8 - 36x2
= 27x3 + 8 - 27x3 + 36x2 - 12x - 8 - 36x2
= -12x
a, \(\left(x-5\right)\left(2x+3\right)+2x\left(1-x\right)=2x^2+3x-10x-15+2x-2x^2=-5x-15\)
b, \(\left(3x-5\right)^2-\left(x+5\right)\left(5-x\right)-\frac{5}{2}\left(-2x\right)^2\)
\(=9x^2-30x+25-\left(5x-x^2+25-5x\right)-\frac{5}{2}\left(4x^2\right)\)
\(=-30x\)
Tìm x biết:
\(a.3x^2-3x\left(x-2\right)=36\)
\(b.x\left(2x-1\right)\left(x+5\right)-\left(2x^2+1\right)\left(x+4,5\right)=3,5\)
\(c.\left(3x^2-x+1\right)\left(x-1\right)+x^2\left(4-3x\right)=\frac{5}{2}\)
Giúp mk vs ạ <3 <3
a)\(\Leftrightarrow3x^2-3x^2+6x=36\Leftrightarrow6x=36\Leftrightarrow x=6\)
phan tich da thuc thanh nhan tu :
a,(x-5)^2+(x-5)(x+5)-(5-x)(2x+1)
b,\(\left(3x-2\right)\left(4x-3\right)-\left(2-3x\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)
Câu a :
\(\left(x-5\right)^2+\left(x-5\right)\left(x+5\right)-\left(5-x\right)\left(2x+1\right)\)
\(=x^2-10x+25+x^2-25-10x-5+2x^2+x\)
\(=4x^2-19x-5\)
Câu b :
\(\left(3x-2\right)\left(4x-3\right)-\left(2-3x\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)
\(=12x^2-9x-8x+6-2x+2+3x^2-3x-6x^2-6x+4x+4\)
\(=9x^2-24x+2\)
Tìm x :
\(\frac{3x}{x-2}-\frac{2}{x-5}=\frac{3x}{\left(x-2\right)\cdot\left(5-x\right)}\)
ĐKXĐ: \(x\notin\left\{2;5\right\}\)
Ta có: \(\dfrac{3x}{x-2}-\dfrac{2}{x-5}=\dfrac{3x}{\left(x-2\right)\left(5-x\right)}\)
\(\Leftrightarrow\dfrac{3x\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}-\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x-5\right)}+\dfrac{3x}{\left(x-2\right)\left(x-5\right)}=0\)
Suy ra: \(3x^2-15x-2x+4+3x=0\)
\(\Leftrightarrow3x^2-14x+4=0\)
\(\Delta=196-4\cdot3\cdot4=196-48=148\)
Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là
\(\left\{{}\begin{matrix}x_1=\dfrac{14-\sqrt{148}}{6}=\dfrac{7-\sqrt{37}}{3}\left(nhận\right)\\x_2=\dfrac{14+\sqrt{148}}{6}=\dfrac{7+\sqrt{37}}{3}\left(nhận\right)\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{7-\sqrt{37}}{3};\dfrac{7+\sqrt{37}}{3}\right\}\)
Lớp 8 chưa học delta nên mk sẽ trình bày theo cách khác nha!
Rút gọn pt trên ta được: 3x2 - 14x + 4 = 0 (Theo kết quả của Nguyễn Lê Phước Thịnh CTV)
\(\Leftrightarrow\) 3(x2 - \(\dfrac{14}{3}\)x + \(\dfrac{4}{3}\)) = 0
\(\Leftrightarrow\) x2 - 2.\(\dfrac{14}{6}\)x + \(\dfrac{196}{36}\) - \(\dfrac{37}{9}\) = 0
\(\Leftrightarrow\) (x - \(\dfrac{14}{6}\))2 - \(\left(\dfrac{\sqrt{37}}{3}\right)^2\) = 0
\(\Leftrightarrow\) (x - \(\dfrac{14}{6}\) - \(\dfrac{\sqrt{37}}{3}\))(x - \(\dfrac{14}{6}\) + \(\dfrac{\sqrt{37}}{3}\)) = 0
\(\Leftrightarrow\) (x - \(\dfrac{7}{3}\) - \(\dfrac{\sqrt{37}}{3}\))(x - \(\dfrac{7}{3}\) + \(\dfrac{\sqrt{37}}{3}\)) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=\dfrac{7+\sqrt{37}}{3}\\x=\dfrac{7-\sqrt{37}}{3}\end{matrix}\right.\) (TM)
Vậy ...
Chúc bn học tốt!
tìm a,b để đa thứ f(x) chia hết cho đa thức g(x)
\(a.f\left(x\right)=x^4-9x^3+21x^2+ax+b: g\left(x\right)=x^2-x-1\)
\(b.f\left(x\right)=x^4-x^3+6x^2-x+a: g\left(x\right)=x^2-x+5\)
\(c.f\left(x\right)=3x^3+10x^2-5+a: g\left(x\right)=3x+1\)
em chưa cho đa thức f(x) và g(x) nà
a: \(\dfrac{f\left(x\right)}{g\left(x\right)}\)
\(=\dfrac{x^4-9x^3+21x^2+ax+b}{x^2-x-1}\)
\(=\dfrac{x^4-x^3-x^2-8x^3+8x^2+8x+14x^2-14x-14+\left(a+6\right)x+b+14}{x^2-x-1}\)
\(=x^2-8x+14+\dfrac{\left(a+6\right)x+b+14}{x^2-x-1}\)
Để f(x) chia hết cho g(x) thì a+6=0 và b+14=0
=>a=-6 và b=-14
b: \(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^4-x^3+5x^2+x^2-x+5+a-5}{x^2-x+5}\)
\(=x^2+1+\dfrac{a-5}{x^2-x+5}\)
Để f(x) chia hết g(x) thì a-5=0
=>a=5