1/4 + 1/3 : 2x = -5
giúp T~T
Giúp mik vs mik sẽ tick cho T-T
Bài1: Tìm số hữu tỉ x bt rằng:
e) 2/3x - 3/12 =4/5 - (7/x - 2)
f) 1/x-1 + -2/3 . (3/4 - 6/5) = 5/2 - 2x
g) 3 - 2/2x - 3 = 2/5 + 2/9 - 6x - 2/3
h) x/2 - 1/2 = 1/12
Tìm x
a) x + 12 = (-5) - x
b) 2 . ( x - 1 ) + 3 . ( x - 2 ) = x - 4
c) 4 . ( 2x + 7 ) - 3 . ( 3x - 2 ) = 24
d) 3 . ( c - 2 ) + 2x = 10
Giúp mik với T-T.
a) x + 12 = (-5) - x
=> chuyển vế : x + x = -12 - 5
=> 2x = -17
=> x = \(-\frac{17}{2}\)
b) 2 . (x - 1) + 3 . (x-2) = x - 4
=> 2x - 2 + 3x - 6 = x - 4
=> chuyển vế: 2x +3x - x = 2 + 6 - 4
=> 4x = 4 => x = 1
c) 4 . (2x +7) - 3 . (3x-2) = 24
=> 8x + 28 - 9x +6 = 24
=> - x = -28 - 6 + 24
=> x = 10
d) 3 . ( x-2) + 2x = 10 (Ý bạn c là x đúng không?)
=> 3x - 6 + 2x = 10
=> 5x = 6 + 10
=> 5x = 16 => x = \(\frac{16}{5}\)
Đúng thì k mik nha. Thanks!
\(a,x+12=\left(-5\right)-x\)
\(x+x=12-5\)
\(2x=7\Leftrightarrow x=\frac{7}{2}\)
\(b,2\left(x-1\right)+3\left(x-2\right)=x-4\)
\(2x-2+3x-6=x-4\)
\(2x+3x-x=-4+2+6\)
\(4x=4\Leftrightarrow x=1\)
\(c,4\left(2x+7\right)-3\left(3x-2\right)=24\)
\(4x+28-9x+6=24\)
\(4x-9x=24-28-6\)
\(-5x=-10\Leftrightarrow x=2\)
\(d,3\left(x-2\right)+2x=10\)
\(3x-6+2x=10\)
\(3x+2x=10+6\)
\(5x=16\Leftrightarrow x=\frac{16}{5}\)
a,\(x+12=\left(-5\right)-x\)
\(=>x+x=-5-12=-17\)
\(=>x=\frac{-17}{2}\)
b,\(2.\left(x-1\right)+3.\left(x-2\right)=x-4\)
\(=>2x-2+3x-6=x-4\)
\(=>2x+3x-x=-4+2+6\)
\(=>4x=4\)
\(=>x=1\)
c,
Bài 1:Tính:
a)(1/27.x^3-y^3)
b)(2x^2-3y^3)
bài 2:Rút gọn biểu thức:
a)(6x+1)^2+(6x-1)^2-2.(1+6x).(1+6x)
b)3(2^2+1).(2^2-1).(2^8+1).(2^16+1)
c)C=12(5^2+1).(5^4+1).(5^8+1).(5^16+1)
giúp mk vx, mk cần gấp...T^T
Bài 1 không có cơ sở để tính biểu thức.
Bài 2:
a.
$(6x+1)^2+(6x-1)^2-2(6x+1)(6x-1)$
$=[(6x+1)-(6x-1)]^2=2^2=4$
b.
$3(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)$
$=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)$
$=(2^4-1)(2^4+1)(2^8+1)(2^{16}+1)$
$=(2^8-1)(2^8+1)(2^{16}+1)$
$=(2^{16}-1)(2^{16}+1)=2^{32}-1$
c.
$2C=(5^2-1)(5^2+1)(5^4+1)(5^8+1)(5^{16}+1)$
$=(5^4-1)(5^4+1)(5^8+1)(5^{16}+1)$
$=(5^8-1)(5^8+1)(5^{16}+1)$
$=(5^{16}-1)(5^{16}+1)=5^{32}-1$
$\Rightarrow C=\frac{5^{32}-1}{2}$
Tìm x:
1. 3x (2x + 3) - (2x + 5).(3x - 2) = 8
2. 4x (x -1) - 3(x2 - 5) -x2 = (x - 3) - (x + 4)
3. 2 (3x -1) (2x +5) - 6 (2x - 1) (x + 2) = -6
4. 3 ( 2x - 1) (3x - 1) - (2x - 3) (9x - 1) - 3 = -3
5. (3x - 1) (2x + 7) - ( x + 1) (6x - 5) = (x + 2) - (x - 5)
6. 3xy (x + y) - (x + y) (x2 + y2 + 2xy) + y3 = 27
7. 3x (8x - 4) - 6x (4x - 3) = 30
8. 3x (5 - 2x) + 2x (3x - 5) = 20
HELP ME T^T
Tìm x:
1. 3x (2x + 3) - (2x + 5).(3x - 2) = 8
\(\Leftrightarrow6x^2+9x-6x^2+4x-15x+10=0 \)
\(\Leftrightarrow-2x+10=0\Leftrightarrow x=5\)
Vậy x = 5
2. 4x (x -1) - 3(x2 - 5) -x2 = (x - 3) - (x + 4)
\(\Leftrightarrow4x^2-4x-3x^2+15-x^2=x-3-x-4\)
\(\Leftrightarrow-4x+15=-7\)
\(\Leftrightarrow-4x=-22\Leftrightarrow x=\frac{11}{2}\)
Vậy x = \(\frac{11}{2}\)
3. 2 (3x -1) (2x +5) - 6 (2x - 1) (x + 2) = -6
\(\Leftrightarrow2\left(6x^2+15x-2x-5\right)-6\left(2x^2+4x-x-2\right)=-6\)
\(\Leftrightarrow12x^2+30x-4x-10-12x^2-24x+6x+12=-6\)
\(\Leftrightarrow8x=-8\Leftrightarrow x=-1\)
Vậy x = -1
4. 3 ( 2x - 1) (3x - 1) - (2x - 3) (9x - 1) - 3 = -3
\(\Leftrightarrow3\left(6x^2-2x-3x+1\right)-18x^2+2x+27x-3-3=-3\)
\(\Leftrightarrow18x^2-6x-9x+3-18x^2+2x+27x-6=-3\)
\(\Leftrightarrow14x=0\Leftrightarrow x=0\)
Vậy x = 0
5. (3x - 1) (2x + 7) - ( x + 1) (6x - 5) = (x + 2) - (x - 5)
\(\Leftrightarrow6x^2+21x-2x-7-6x^2+5x-6x+5=7\)
\(\Leftrightarrow18x=9\Leftrightarrow x=\frac{1}{2}\)
Vậy x = \(\frac{1}{2}\)
6. 3xy (x + y) - (x + y) (x2 + y2 + 2xy) + y3 = 27
\(\Leftrightarrow3x^2y+3xy^2-\left(x+y\right)^3+y^3=27\)
\(\Leftrightarrow3x^2y+3xy^2-x^3-y^3-3x^2y-3xy^2+y^3=27\)
\(\Leftrightarrow-x^3=27\)
\(\Leftrightarrow x=-3\)
Vậy x = -3
7. 3x (8x - 4) - 6x (4x - 3) = 30
\(\Leftrightarrow24x^2-12x-24x^2+12x=30\)
\(\Leftrightarrow0=30\) ( vô lý)
Vậy pt vô nghiệm
8. 3x (5 - 2x) + 2x (3x - 5) = 20
\(\Leftrightarrow15x-6x^2+6x^2-10x=20\)
\(\Leftrightarrow5x=20\Leftrightarrow x=4\)
Vậy x = 4
Bài 1: / x - 2 / + / 3 - 2x / = 2x + 1. Tính x.
Bài 2: Tính x.y^2.t^3 + x^2.y^3.t^4 + x^3.y^4.t^5 + ... + x^2017.y^2018.y^2019 biết x = y = t = -1.
Bài 3: / x + 1 / + / x + 3 / + / x + 5 / + / x + 7 / = 8. Tìm x.
Bài 4: Tìm các cặp số ( x;y ) biết \(\frac{1+5y}{24}\)= \(\frac{1+7y}{7x}\)= \(\frac{1+9y}{2x}\).
Giúp mình giải hết và nhanh, giải rõ ràng nha.
Mình đang cần gấp.
tìm x:
a.(x-3)^4-(x+3)^4+24x^3=216
b.(2x+1)(16x^4-8x^3+4x^2-2x+1)-(2x-1)(16x^4+8x^3+4x^2+2x+1)=2
tìm GTNN của bt:
x^2+2x+4
x^2-x-5/3/4
4x^2-x-3/16
Tìm GTNN của biểu thức :
\(x^2+2x+4\)
Đặt A = \(x^2+2x+4\)
\(\Leftrightarrow A=\left(x^2+2.x.1+1\right)+3\)
\(\Leftrightarrow A=\left(x+1\right)^2+3\)
Ta luôn có : \(\left(x+1\right)^2\ge0\forall x\)
Suy ra : \(\left(x+1\right)^2+3\ge3\forall x\)
Hay A\(\ge3\) với mọi x
Dấu "=" xảy ra khi \(x+1=0\Rightarrow x=-1\)
Nên : \(A_{min}=3khix=-1\)
1/Tìm x,biết:
a/|2x-5|=4
b/1/3-|5/4-2x|=1/4
c/2×|2x-3|=1/2
1. Tìm x biết
a. 1440:[41-(2x-5)] =2^4 x3
b, 3x(1-4x)+2x(6x-1) =x-18
c, (2x+1)^3 -72 = (-45)
d, 4^2x-1 +18 = 48+36
e, Tìm x thuốc Z để 2x-1/ x-3 nguyên
1e) Để \(\frac{2x-1}{x-3}\) nguyên thì \(2x-1⋮x-3\)
\(\Leftrightarrow2x-6+5⋮x-3\)
\(\Leftrightarrow2\left(x-3\right)+5⋮x-3\)
Do \(2\left(x-3\right)⋮x-3\) \(\Rightarrow5⋮x-3\)
\(\Rightarrow x-3\in\left\{-5;-1;1;5\right\}\)
\(\Leftrightarrow x\in\left\{-2;2;4;8\right\}\)
Vậy:...................
Phân tích đa thức thành nhân tử bằng phương pháp đặt biến phụ.
a. (x + 1)(x + 2)(x + 4)(x + 5) – 4
b. (2x + 1)^4– 3(2x + 1)^2 + 2
c.x^4 + 2x^2– 3
d.x(x + 1)(x + 2)(x + 3) – 24
giúp mình với ạ, mình đang cần gấp T^T
a) \(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)-4=\left(x^2+6x+5\right)\left(x^2+6x+8\right)-4\)
Đặt \(t=x^2+6x+5\)
\(PT=t\left(t+3\right)-4=t^2+3t-4=\left(t-1\right)\left(t+4\right)\)
Thay t: \(PT=\left(x^2+6x+5-1\right)\left(x^2+6x+5+4\right)=\left(x^2+6x+4\right)\left(x^2+6x+9\right)=\left(x^2+6x+4\right)\left(x+3\right)^2\)
b) Đặt \(t=\left(2x+1\right)^2\)
\(PT=t^2-3t+2=\left(t^2-3t+\dfrac{9}{4}\right)-\dfrac{1}{4}=\left(t+\dfrac{3}{2}\right)^2-\dfrac{1}{4}=\left(t+1\right)\left(t+2\right)\)
Thay t:
\(PT=\left[\left(2x+1\right)^2+1\right]\left[\left(2x+1\right)^2+2\right]=\left[4x^2+4x+2\right]\left[4x^2+4x+3\right]=2\left[2x^2+2x+1\right]\left[4x^2+4x+3\right]\)