cho tam giác ABC vuông tại A Vẽ (O,R) đườngkínhAB .Gọi D là giao của BC với (O) .E là điểm chính giữa của cung nhỏ BD,AE cắt BD tại M H là hình chiếu vuong góc của C trên AE
a cm 4 điểm a,c,d,h thẳng hàng b,cm h là trung điểm AMCho (O;R) , đường kính AB trên tiếp tuyến tại A của(O;R). Lấy điểm C sao cho AC=2R. Gọi D là giao điểm của BC với (O).
a)C/m AD là trung tuyến của tam giác ABC
b)Vẽ dây cung AE vuông góc với OC tại H. C/m CE là tiếp tuyến của (O)
c) Đường thẳng BE cắt OD tại F. Tính góc OFB
d)Gọi K là hình chiếu của E xuống AB, M=EK cắt BC. C/m ME=MK
Mọi người giúp mình với, mình đang cần gấp
1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D;
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE.
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng
5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF
Cho Ta giác ABC vuông tại A, kẻ tia phân giác trong BD của góc ABC,D thuộc AC, gọi E là hình chiếu vuông góc của D trên BC, BD cắt AE tại H, tia ED và BA cắt nhau tại F
1) CM: Tam giác ABC = Tam giác EBD và AB = BE
2) CM: BD vuông góc với AE và H là trung điểm của AE
3) So sánh: AD và CD
CM: AF = CE và tam giác BFC cân
5) CM: AE song song với CF, BD song song với CF
Xin lỗi mình không thể chụp ảnh.
Phần 5 thì chỉ có AE song song với CF thôi nhé. Còn BD vuông góc với CF.
1. Xét tam giác ABD và tam giác EBD có:
BAD=BED=90o (gt)
ABD= EBD( BD là tia phân giác)
BD chung ( gt)
=> 2 tam giác = nhau
=> AB=BE ( 2 cạnh tương ứng)
Xét tam giác EBF và tam giác ABC có:
B1=B2(cmt)
A=E (cmt)
BE=BA( cmt)
=> 2 tam giác = nhau
2. Trong tam giác cân, tia phân giác xuất phát từ đỉnh đồng thời là đường trung trực. => BH vuông góc với AE và H là trung điểm của AE( tính chất đường trung trực) (đpcm)
3.Ta có: AD=ED( tam giác ABD= EBD) (1)
Mặt khác, DC> ED( cạnh huyền lớn hơn cạnh góc vuông) (2)
Từ (1)và (2) => DC>AD ( đcpm)
Ý 2:
Có: BA=BE(cmt)
BF=BC( tam giác BFE= BCA)
và BC= BE+EC ; BF= AB+AF
=> AF= EC
=> Tam giác BFC cân
5. Gọi giao của BH và FC là G.
Có tam giác BFC cân( cmt)
=> BG vuông góc với FC ( trong tam giác cân, tia phân giác đồng thời là đường trung tuyến)
Mặt khác,BH vuông góc với AE
=> AE song song FC ( từ vuông gó đến song song)
Nhớ tim và cảm ơn nhé. cảm ơn bạn. Chúc bạn học tốt.
Cho tam giác ABC vuông tại A. Vẽ đường tròn (O) đường kính AB cắt BC tại H
a) Chứng minh AC là tiếp tuyến của (O) và BH.BC = 4OB^2
b Gọi D là điểm chính giữa cung AH, tiếp tuyến tại H với đường tròn (O) cắt AC tại M . chứng minh BD là phân giác của góc ABC và 3 điểm O,D,M thẳng hàng
c) CHứng minh tứ giác OAHM nội tiếp và góc CMH = 2.HOM
d) Tia BD cắt AC tại E, gọi I là tâm đường tròn ngoại tiếp tam giác CDE. chứng minh IO vuông góc với HD
e) Từ C vẽ tiếp tuyến Cx với đường tròn (O) , từ O vẽ tia Oy vuông góc với OC. Gọi K là giao điểm của Cx và Oy. CHứng minh BK là tiếp tuyến của (O)
làm ơn giúp mình giải bài toán này mình đang cần gấp để nộp mình xin cảm ơn nhiều
cho tam giác ABC vuông tại A có AB=5cm, BC=10cm
a, Tính dộ dài AC
b, Vẽ đường phân giác BD của tam giác ABC và gọi E là hình chiếu của D trên BC. CM tam giác ABD = tam giác EBD và AE vuông góc BD
c, Gọi giao điểm của hai đường thẳng ED và BA là F. CM tam giác ABC = tam giác AFC
d, Qua A vẽ dường thẳng song song với BC cắt CF tại G. CM ba điểm B,D,G thảng hàng
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=10^2-5^2=75\)
hay \(AC=5\sqrt{3}cm\)
Vậy: \(AC=5\sqrt{3}cm\)
Cho nửa đường tròn tâm O đường kính AB vẽ OC vuông góc với AB, nằm trên cung nhỏ BC lấy M tùy ý, lấy H là hình chiếu của C trên AM
a) Chứng minh tam giác HCM vuông cân
b) Gọi I là giao điểm của CM với BO, MI cắt nửa đường tròn tâm O tại D. Chứng minh CM//BD
c) Tìm vị trí M trên BC để HC=HO
d) Gọi N là giao điểm của AM và OC. Khi M di động trên cung nhỏ BC thì trung điểm K của BN di động trên đường nào vì sao ?
Cho đường tròn (O;R) đường kính AB. Trên tiếp tuyến tại A của (O;R) lấy điểm C sao cho AC = 2R. Gọi D là giao điểm của BC và đường tròn (O)
a) CM: AD là đường cao và cũng là đường trung tuyến của ΔABC
b) Vẽ dây cung AE vuông góc với OC tại H. CM:CE là tiếp tuyến của đường tròn (O;R)
c) Đường thẳng BE cắt đường thẳng OD tại F. Tính tanOBF và suy ra số độ của góc OFB
d) Gọi K là hình chiếu của điểm E xuống AB, M là giao điểm của EK với BC. Tính độ dài các đoạn thẳng ME và MK theo R
Cho (O) và điểm A nắm ngoài đường tròn, vẽ tiếp tuywwns AB,AC (B,C là tiếp điểm). Gọi giao của AO và (O) là D và E (D nằm giữa A và E), giao của Bc và AO là H.
a)chứng minh D là tâm đường tròn nội tiếp tam giác ABC
b) Lấy F là 1 điểm bất kì trên cung nhỏ CD của (O) (F khác D,C). Từ A kẻ đường vuông góc với EF cắt EF tại M và cắt CF tại N.Chứng minh:\(\frac{BD}{BE}=\frac{AB}{AE}\)và \(\frac{NF}{NE}=\frac{BD^2}{BE^2}\)