CMR:n3+(n+1)3+(n+2)3.9
Với nFN*
Cho n là 1 số nguyên dương , tìm giá trị của :
1+1/2+2/2+1/2+1/3+2/3+3/3+2/3+1/3+.....+1/n+2/n+.....n/n+(n-1)/n+(n-2)/n+....+1/n
bạn viết thế mình ko hiểu
1
a,Lim\(\sqrt{1+2n-n^3}\)
b,Lim\(\sqrt{n^2+2n+3}-\sqrt[3]{n^2+n^3}\)
c,Lim\(\dfrac{\left(2\sqrt{n}+1\right)\left(\sqrt{n}+3\right)}{\left(n+1\right)\left(n+2\right)}\)
d,\(\dfrac{4^{n+1}-3\times2^n}{3^{n+2}+2^n}\)
e,\(\dfrac{7^{n+1}-5^{n+2}+3}{2\times6^{n+1}-3^n+3}\)
f,\(\dfrac{\sqrt{n^4+1}}{n}\) -\(\dfrac{\sqrt{4n^6+1}}{n}\)
\(a=\lim\sqrt{n^3}\sqrt{\dfrac{1}{n^3}+\dfrac{2}{n^2}-1}=\infty.\left(-1\right)=-\infty\)
\(b=\lim\left(\sqrt{n^2+2n+3}-n+n-\sqrt[3]{n^2+n^3}\right)\)
\(=\lim\dfrac{2n+3}{\sqrt{n^2+2n+3}+n}+\lim\dfrac{-n^2}{n^2+n\sqrt[3]{n^2+n^3}+\sqrt[3]{\left(n^2+n^3\right)^2}}\)
\(=\lim\dfrac{2+\dfrac{3}{n}}{\sqrt{1+\dfrac{2}{n}+\dfrac{3}{n^2}}+1}+\lim\dfrac{-1}{1+\sqrt[3]{\dfrac{1}{n}+1}+\sqrt[3]{\left(\dfrac{1}{n}+1\right)^2}}=\dfrac{2}{2}-\dfrac{1}{3}=\dfrac{2}{3}\)
\(c=\lim\dfrac{\left(\dfrac{2}{\sqrt{n}}+\dfrac{1}{n}\right)\left(\dfrac{1}{\sqrt{n}}+\dfrac{3}{n}\right)}{\left(1+\dfrac{1}{n}\right)\left(1+\dfrac{2}{n}\right)}=\dfrac{0.0}{1.1}=0\)
\(d=\lim\dfrac{4-3\left(\dfrac{2}{4}\right)^n}{9.\left(\dfrac{3}{4}\right)^n+\left(\dfrac{2}{4}\right)^n}=\dfrac{4}{0}=+\infty\)
\(e=\lim\dfrac{7-25\left(\dfrac{5}{7}\right)^n+3.\left(\dfrac{1}{7}\right)^n}{12.\left(\dfrac{6}{7}\right)^n-\left(\dfrac{3}{7}\right)^n+3\left(\dfrac{1}{7}\right)^n}=\dfrac{7}{0}=+\infty\)
\(f=\lim\dfrac{n^4-4n^6}{n\left(\sqrt{n^4+1}+\sqrt{4n^6+1}\right)}=\lim\dfrac{\dfrac{1}{n^2}-6}{\sqrt{\dfrac{1}{n^6}+\dfrac{1}{n^{10}}}+\sqrt{\dfrac{4}{n^4}+\dfrac{1}{n^{10}}}}=\dfrac{-6}{0}=-\infty\)
1/ lim \(\dfrac{\sqrt{n^4-n^2}+3n^2}{1-n^2}\)
2/ lim \(\dfrac{n\sqrt{n}-n^3}{4n^3+\sqrt{n}}\)
3/ lim \(\dfrac{3.4^n-1}{2.3^n+4}\)
4/ lim \(\dfrac{2^{n+1}+4.3^{n-1}}{1-2^{n-1}+3^{n+1}}\)
1/...
2/ \(=\lim\dfrac{\dfrac{1}{n\sqrt{n}}-1}{4+\dfrac{1}{n^2\sqrt{n}}}=\dfrac{0-1}{4+0}=-\dfrac{1}{4}\) (chia cả tử-mẫu cho \(n^3\))
3/ \(=\lim\dfrac{3-\left(\dfrac{1}{4}\right)^n}{2.\left(\dfrac{3}{4}\right)^n+4\left(\dfrac{1}{4}\right)^n}=\dfrac{3-0}{2.0+3.0}=\dfrac{3}{0}=+\infty\) (chia tử mẫu cho \(4^n\))
4/ \(=\lim\dfrac{2.2^n+\dfrac{4}{3}.3^n}{1-\dfrac{1}{2}.2^n+3.3^n}=\lim\dfrac{2.\left(\dfrac{2}{3}\right)^n+\dfrac{4}{3}}{\left(\dfrac{1}{3}\right)^n-\dfrac{1}{2}.\left(\dfrac{2}{3}\right)^n+3}=\dfrac{2.0+\dfrac{4}{3}}{0-\dfrac{1}{2}.0+3}=\dfrac{4}{9}\) (chia tử mẫu cho \(3^n\))
a, lim \(\dfrac{\sqrt{n+1}}{1+\sqrt{n}}\)
b, lim \(\dfrac{1+2+...+n}{n^2+2}\)
c, lim \((\sqrt{n^2+n+1}-n)\)
d, lim \((\sqrt{3n-1}-\sqrt{2n-1})\)
e, lim \((\sqrt[3]{n^3+2n^2}-n)\)
g, lim \(\dfrac{(2)^{n}+(3)^{n+2}}{4×(3)^{n}+(2)^{n+3}}\)
a/ \(=\lim\limits\dfrac{\sqrt{\dfrac{n}{n}+\dfrac{1}{n}}}{\dfrac{1}{\sqrt{n}}+\sqrt{\dfrac{n}{n}}}=1\)
b/ \(1+2+...+n=\dfrac{n\left(n+1\right)}{2}\)
\(\Rightarrow\lim\limits\dfrac{n\left(n+1\right)}{2n^2+4}=\lim\limits\dfrac{\dfrac{n^2}{n^2}+\dfrac{n}{n^2}}{\dfrac{2n^2}{n^2}+\dfrac{4}{n^2}}=\dfrac{1}{2}\)
c/ \(=\lim\limits\dfrac{n^2+n+1-n^2}{\sqrt{n^2+n+1}+n}=\lim\limits\dfrac{n+1}{\sqrt{n^2+n+1}+n}=\lim\limits\dfrac{\dfrac{n}{n}+\dfrac{1}{n}}{\sqrt{\dfrac{n^2}{n^2}+\dfrac{n}{n^2}+\dfrac{1}{n^2}}+\dfrac{n}{n}}=\dfrac{1}{1+1}=\dfrac{1}{2}\)
d/ \(=\lim\limits\left[\sqrt{n}\left(\sqrt{3-\dfrac{1}{\sqrt{n}}}-\sqrt{2-\dfrac{1}{\sqrt{n}}}\right)\right]=\lim\limits\left[\sqrt{n}\left(\sqrt{3}-\sqrt{2}\right)\right]=+\infty\)
e/ \(=\lim\limits\dfrac{n^3+2n^2-n-n^3}{\left(\sqrt[3]{n^3+2n^2}\right)^2+n.\sqrt[3]{n^3+2n^2}+n^2}=\lim\limits\dfrac{2n^2-n}{\left(n^3+2n^2\right)^{\dfrac{2}{3}}+n.\left(n^3+2n^2\right)^{\dfrac{1}{3}}+n^2}\)
\(=\dfrac{2}{1+1+1}=\dfrac{2}{3}\)
g/ \(=\lim\limits\dfrac{2^n+9.3^n}{4.3^n+8.2^n}=\lim\limits\dfrac{\left(\dfrac{2}{3}\right)^n+9.\left(\dfrac{3}{3}\right)^n}{4.\left(\dfrac{3}{3}\right)^n+8.\left(\dfrac{2}{3}\right)^n}=\dfrac{9}{4}\)
chứng minh rằng
1, 1/n(n+1)=1/n-1/n+1
2, 2/n(n+1)(n+2)=1/n(n+1)-1/(n+1)(n+2)
3, 3/n(n+1)(n+2)(n+3)=1/n(n+1)(n+2)-1/(n+1)(n+2)(n+3)
4, 4/(2n-1)(2n+1)(2n+3)=1/(2n+1)(2n-1)-1/(2n+1)(2n+3)
5, m/n(n+m)=1/n-1/n+m
6, 2m/n(n+m)(n+2n)=1/n(n+m)-1/(n+m)(n+2n)
1) Chứng minh rằng: \(1+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{3\sqrt{3}}+...+\dfrac{1}{n\sqrt{n}}< 2\sqrt{2}\left(n\in N\right)\)
2) Chứng minh rằng: \(\dfrac{2}{3}+\sqrt{n+1}< 1+\sqrt{2}+\sqrt{3}+...+\sqrt{n}< \dfrac{2}{3}\left(n+1\right)\sqrt{n}\)
3) \(2\sqrt{n}-3< \dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}< 2\sqrt{n}-2\)
4) \(\dfrac{\sqrt{2}-\sqrt{1}}{2+1}+\dfrac{\sqrt{3}-\sqrt{2}}{3+2}+...+\dfrac{\sqrt{n+1}-\sqrt{n}}{n+1+n}< \dfrac{1}{2}\left(1-\dfrac{1}{\sqrt{n+1}}\right)\)
a) F = 3/1.4 + 3/4.7 + 3/7.10 + ... + 3/n.(n+3) với n thuộc N*
b)M = 1/2 mũ 2 + 1/3 mũ 2 +1/4 mũ 2 +...+ 1/n mũ 2 < 1
c) N = 1/4 mũ 2 + 1/6 mũ 2 + 1/8 mũ 2+...+ 1/2n mũ 2 < 1/4 (với n thuộc N,n lớn hơn hoặc bằng 2)
d) P = 2!/3! + 2!/4! + 2!/5!+ ...+ 2!/n! <2 ( với n thuộc N,n lớn hơn hoặc bằng 2)
nhanh lên nhé các bạn trả lời nhanh và đúng thì mình tích cho
bn cho mình gửi sắp đến thi học kì 2 rồi. đây là những món quà mà bn sẽ nhận đc:
1: áo quần
2: tiền
3: đc nhiều người yêu quý
4: may mắn cả
5: luôn vui vẻ trong cuộc sống
6: đc crush thích thầm
7: học giỏi
8: trở nên xinh đẹp
phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người, sau 3 ngày bn sẽ có những đc điều đó. nếu bn ko gửi tin nhắn này cho 25 người thì bn sẽ luôn gặp xui xẻo, học kì 2 bn sẽ là học sinh yếu và bạn bè xa lánh( lời nguyền sẽ bắt đầu từ khi đọc) ( mình
cũng bị ép);-;
1: \(1^2+2^2+3^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\)
2: \(1^3+2^3+...+n^3=\dfrac{n^2\left(n+1\right)^2}{4}\)
\(1^2+2^2+3^2...+n^2=1+2\left(1+1\right)+3\left(2+1\right)+...+n\left(n-1+1\right)\\ =1+1\cdot2+2+3\cdot2+3+...+n\left(n-1\right)+n\\ =\left(1+2+3+...+n\right)+\left[1\cdot2+2\cdot3+...+n\left(n-1\right)\right]\)
Ta có \(1\cdot2+2\cdot3+...+n\left(n-1\right)\)
\(=\dfrac{1}{3}\left[1\cdot2\cdot3+2\cdot3\cdot3+...+3n\left(n-1\right)\right]\\ =\dfrac{1}{3}\left[1\cdot2\left(3-0\right)+2\cdot3\left(4-1\right)+...+n\left(n-1\right)\left(n+2+n+1\right)\right]\\ =\dfrac{1}{3}\left(1\cdot2\cdot3-1\cdot2\cdot3+2\cdot3\cdot4-...-\left(n-2\right)\left(n-1\right)n+\left(n-1\right)n\left(n+1\right)\right)\\ =\dfrac{\left(n-1\right)n\left(n+1\right)}{3}\)
\(\Rightarrow1^2+2^2+...+n^2=\dfrac{n\left(n+1\right)}{2}+\dfrac{\left(n-1\right)n\left(n+1\right)}{3}\\ =\dfrac{3n\left(n+1\right)+2n\left(n-1\right)\left(n+1\right)}{6}=\dfrac{n\left(n+1\right)\left(3+2n-2\right)}{6}\\ =\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\)
1/2+1/3+2/3+1/4+2/4+3/4+1/5+2/5+3/5+4/5+...+1/n+2/n+3/n+...+n-1/n